phosphate buffer solutions were prepared according to liter-
ature reports and used within a few days, after checking the
actual pH value with a PHM82 Radiometer equipped with a
GK2401C combinated electrode. Freshly double-distilled water
was used for the preparation of the buffers, which were in turn
used as solvents for the preparation of the measurement solu-
tions. All fitting analyses were performed by means of the
6 (a) R. Breslow, A. W. Czarnik, M. Lauer, R. Leppkes, J. Winkler and
S. J. Zimmermann, J. Am. Chem. Soc., 1986, 108, 1969–1979;
(
b) R. Breslow and S. D. Dong, Chem. Rev., 1998, 98, 1997–2011;
c) R. Breslow, Acc. Chem. Res., 1995, 28, 146–153.
K. Takahashi, Chem. Rev., 1998, 98, 2013–2033.
K. B. Lipkowitz, Chem. Rev., 1998, 98, 1829–1873.
(
7
8
9 (a) M. Wedig, S. Laug, T. Christians, M. Thunhorst and
U. Holzgrabe, J. Pharm. Biomed. Anal., 2002, 27, 531–540; (b) M. V.
Rekharsky and Y. Inoue, J. Am. Chem. Soc., 2000, 122, 4418–4435;
KALEIDAGRAPH 3.0.1 software delivered by Abelbeck
Software.
(
8
1
c) M. V. Rekharsky and Y. Inoue, J. Am. Chem. Soc., 2001, 123,
13–826; (d ) K. Kano and H. Hasegawa, J. Am. Chem. Soc., 2001,
23, 10616–10627.
Measurement of pK of 12 and 13
a
10 M. V. Rekharsky and Y. Inoue, Chem. Rev., 1998, 98, 1875–
1
917.
A weighed amount (about 40 µmol) of 12 or 13 was introduced
in a water-jacketed vessel thermostated at 298.1 ± 0.3 K and
was dissolved with a 0.0025 M standardised NaOH solution
1
1
1 I. Tabushi, Y. Kiyosuke, T. Sugimoto and K. Yamamura, J. Am.
Chem. Soc., 1978, 100, 916–919.
2 (a) M. V. Rekharsky, R. N. Goldberg, F. P. Schwarz, Y. B. Tewari,
P. D. Ross, Y. Yamashoji and Y. Inoue, J. Am. Chem. Soc., 1995, 117,
8330–8840; (b) M. V. Rekharsky, M. P. Mayew, R. N. Goldberg,
P. D. Ross, Y. Yamashoji and Y. Inoue, J. Phys. Chem. B, 1997, 101,
(
20 ml) under magnetic stirring. A stream of fine Argon bubbles
was passed for 15 min through the solution, which was then
titrated with a 0.1 M standardised HCl solution introduced into
the vessel by a microsyringe. The titration was performed fol-
lowing the pH value with the apparatus described above. Data
were finally processed fitting the pH vs. added base curve by
means of the proper equation obtained analytically.
8
7–100.
3 (a) I. Tabushi and T. Mitzutani, Tetrahedron, 1987, 43, 1439–1447;
b) L. Liu and Q.-X Guo, J. Inclusion Phenom. Macrocyclic Chem.,
002, 42, 1–14.
1
(
2
14 (a) F. D’Anna, P. Lo Meo, S. Riela, M. Gruttadauria and R. Noto,
Tetrahedron, 2001, 57, 6823–6827; (b) P. Lo Meo, F. D’Anna,
S. Riela, M. Gruttadauria and R. Noto, Tetrahedron, 2002, 58,
Measurement of binding constants
6
039–6045.
Solutions for measurements were prepared at a fixed concen-
tration of guest (usually about 30 mM) and at a concentration
of host ranging up to 0.05 M for α-CD, or up to 0.008 M for
β-CD (according to the maximum solubility of the two cyclo-
dextrins). Uv-vis spectra were recorded at different temper-
atures ranging from 288.15 to 318.15 K on a Beckmann
DU-7 spectrophotometer equipped with a peltier temperature
controller, able to keep the temperature within a ±0.1 K error.
Suitable work wavelengths for each guest were chosen after
recording some “difference spectra” by comparison of the
samples without cyclodextrin and in presence of given amounts
of cyclodextrin. The absorbances of the different solutions at
the work wavelength were processed by direct non-linear
15 (a) T.-X. Lü, D.-B. Zhang and S.-J. Dong, J. Chem. Soc., Faraday
Trans., 1989, 85, 1439–1445; (b) H. -J. Schneider, F. Hacket,
V. R üdiger and H. Ikeda, Chem. Rev., 1998, 98, 1755–1785.
1
6 G. M. Bonora, R. Fornasier, P. Scrimin and U. Tonellato, J. Chem.
Soc., Perkin Trans. 2, 1985, 367–369.
1
7 O. S. Tee, C. Mazza and X.-X. Du, J. Org. Chem., 1990, 55, 3603–
3
609.
18 (a) F. W. Lichtenthaler and S. Immel, Liebigs Ann. Chem., 1996, 27–
37; (b) M. Sakurai, M. Kitagawa, H. Hoshi, Y. Inoue and R. Chûjô,
Chem. Lett., 1988, 895–898.
1
9 A. K. Jana, S. K. Mukhopadhyay and B. B. Bhowmik, Spectrochim.
Acta, Part A, 2002, 58, 1697–1702.
0 W. Saenger, J. Jacob, K. Gessler, T. Steiner, D. Hoffmann, H. Sanbe,
K. Koizumi, S. M. Smith and T. Takaha, Chem. Rev., 1998, 98,
1875–1917. Noticeably, an average number of 2.57 water molecules
for α-CD is reported.
2
29
regression analysis according to eqns (1) and (2).
2
1 H. A. Benesi and J. H. Hildebrand, J. Am. Chem. Soc., 1949, 71,
2
703–2707.
Acknowledgements
22 (a) W. Linert, Inorg. Chim. Acta, 1988, 141, 233–242; (b) Y. Inoue,
Y. Liu, L.-H Tong, B.-J. Shen and D.-S. Jin, J. Am. Chem. Soc.,
1993, 115, 10637–10644; (c) Y. Liu, B.-H. Han, B. Li, P. Zhao,
Y.-T. Chen, T. Wada and Y. Inoue, J. Org. Chem., 1998, 63, 1444–
Financial support from the University of Palermo (funds for
selected research topics) and Italian MIUR within the National
Research Project “Non-aromatic Heterocycles in stereo-
controlled processes” is gratefully acknowledged.
1
454.
2
3 (a) Z.-P. Yi, H.-L. Chen, Z.-Z. Huang, Q. Huang and J.-S. Yu,
J. Chem. Soc., Perkin Trans. 2, 2000, 121–127; (b) L. Liu and
Q.-X. Guo, Chem. Rev., 2001, 101, 673–695.
2
4 W. Linert, L.-F. Han and I. Lukovits, Chem. Phys., 1989, 139, 441–
References
4
55.
1
(a) J. Szejtli, Chem. Rev., 1998, 98, 1743–1753 and references therein;
b) C. J. Easton and S. F. Lincoln, Chem. Soc. Rev., 1996, 25, 163–
70; (c) J. Szejtli and T. Osa, Comprehensive Supramolecular
25 Y. Matsui and K. Mochida, Bull. Chem. Soc. Jpn., 1979, 52, 2808–
(
1
2814.
26 M. V. Rekharsky and Y. Inoue, J. Am. Chem. Soc., 2000, 122, 10949–
10955.
Chemistry, eds J. L. Atwood, J. E. D. Davies, D. D. MacNicol and
F. Vögtle, Elsevier, Oxford, 1996, vol. 3; (d ) K. A. Connors,
Chem. Rev., 1997, 97, 1325–1357; (e) G. Wenz, Angew. Chem.,
Int . Ed. Engl., 1994, 33, 803–822.
27 (a) V. Gold and C. Tomlinson, J. Chem. Soc. (B), 1971, 1707–1710;
(b) G. Verardo, A. G. Giumanini, P. Strazzolini and M. Poiana,
Synthesis, 1993, 121–125; (c) H. Suhr, Liebigs Ann. Chem., 1965,
689, 109–117; (d ) H. Suhr, Liebigs Ann. Chem., 1965, 687, 175–182;
(e) C. B. Kremer and L. Greenstein, J. Am. Chem. Soc., 1939, 61,
2552.
28 B. Borecka-Bernarz, A. V. Bree, B. O. Patrick, J. R. Scheffer and
J. Trotter, Can. J. Chem., 1998, 76, 1616–1632.
29 (a) Y. Inoue, K. Yamamoto, T. Wada, S. Everitt, X.-M. Gao,
Z.-J. Hou, L.-H. Tong, S.-K. Jiang and H.-M. Wu, J. Chem. Soc.,
Perkin Trans. 2, 1992, 1253–1257; (b) Y. Liu, B. Li, C.-C. You,
T. Wada and Y. Inoue, J. Org. Chem., 2001, 66, 225–232.
2
K. Ukeama, F. Hirayama and T. Irie, Chem. Rev., 1998, 98, 2045–
2
076.
3
4
A. R. Hedges, Chem. Rev., 1998, 98, 2035–2044.
(a) S. Li, W. C. Purdy and E. Schneiderman, Chem. Rev., 1992, 92,
1
457–1470; (b) A. M. Stalcup, J. Chromatogr. B, 2000, 745, 83–102.
5
(a) K. B. Lipkowitz, R. Coner, M. A. Peterson, A. Morreale and
J. Shakelford, J. Org. Chem., 1998, 63, 732–745 and references
therein; (b) F. D’Anna, S. Riela, P. Lo Meo, M. Gruttadauria and
R. Noto, Tetrahedron: Asymmetry, 2002, 13, 1755–1760.
1
590
O r g . B i o m o l . C h e m . , 2 0 0 3 , 1, 1 5 8 4 – 1 5 9 0