Catalytic Epoxidations
synthetic interest. NMR spectroscopic investigations of the F. E. K. thanks the Bavarian State Ministry for Economy, Infra-
structure, Traffic and Technology (project no. IBF-3665g/899/2-
NW-0806-0002) for project funding.
MTO–oxazoline complexes showed a correlation between
the shift of the Re–CH signal and the catalyst perform-
3
ance.
[
1] For reviews on metal-catalyzed epoxidation and commentaries,
see: a) K. A. Jørgensen, Chem. Rev. 1989, 89, 431–458; b) G.
Grigoropoulou, J. H. Clark, J. A. Elings, Green Chem. 2003, 5,
Experimental Section
1
–7; c) B. S. Lane, K. Burgess, Chem. Rev. 2003, 103, 2457–
473; d) M. Beller, Adv. Synth. Catal. 2004, 346, 107–108.
2
General Remarks: All solvents and chemicals were obtained com-
[
2] F. Shi, M. K. Tse, H. M. Kaiser, M. Beller, Adv. Synth. Catal.
007, 349, 2425–2430.
mercially and were used as received. “30%” aqueous H
urea/hydrogen peroxide (UHP) from Merck were used as received.
The peroxide content of H varied from 30 to 40% as deter-
mined by titration. NMR spectra were measured using a Bruker
ARX 300 spectrometer at 400 MHz ( H). All spectra were recorded
in CDCl , and chemical shifts (δ) are reported in ppm relative to
3
tetramethylsilane referenced to the residual solvent peaks. Spectra
were measured at room temperature unless stated otherwise.
2 2
O and
2
[
3] For recent work on Ru-based epoxidations, see: a) I. W. C. E.
Arends, T. Kodama, R. A. Sheldon, in Topics in Organometallic
Chemistry (Eds.: C. Bruneau, P. H. Dixneuf), Springer-Verlag,
Berlin, Heidelberg, 2004, pp. 277–320; b) M. K. Tse, C. Döbler,
S. Bhor, M. Klawonn, W. Mägerlein, H. Hugl, M. Beller, An-
gew. Chem. 2004, 116, 5367–5372; Angew. Chem. Int. Ed. 2004,
2
O
2
1
4
3, 5255–5260; c) M. K. Tse, M. Klawonn, S. Bhor, C. Döbler,
G. Anilkumar, H. Hugl, W. Mägerlein, M. Beller, Org. Lett.
005, 7, 987–990; d) S. Bhor, G. Anilkumar, M. K. Tse, M.
1
Ligand 1b: H NMR (400.1 MHz, CDCl
3
): δ = 2.62 (s, 3 H, Re–
2
CH
3
), 4.2 (dd, 2 H), 4.43 (dd, 2 H), 5.35 (dd, 2 H), 7.27–7.4 (m,
Klawonn, C. Döbler, B. Bitterlich, A. Grotevendt, M. Beller,
Org. Lett. 2005, 7, 3393–3396; e) D. Chatterjee, Coord. Chem.
Rev. 2008, 176–198.
10 H), 7.45 (t, 1 H), 8.06 (dd, 2 H), 8.49 (t, 1 H) ppm.
1
Ligand 2b: H NMR (400.1 MHz, CDCl
3
): δ = 2.59 (s, 3 H, Re–
[
4] a) A. Murphy, G. Dubois, T. D. P. Stack, J. Am. Chem. Soc.
CH
3
), 4.42 (dd, 2 H), 4.93 (dd, 2 H), 5.46 (dd, 2 H), 7.26–7.36 (m,
2
003, 125, 5250–5251; b) K. Muniz-Fernandez, C. Bolm, in
10 H), 7.91 (t, 1 H), 8.34 (dd, 2 H) ppm.
Transition Metals for Organic Synthesis 2nd ed. (Eds.: M.
Beller, C. Bolm), Wiley-VCH, Weinheim, 2004, pp. 344–356; c)
A. Murphy, A. Pace, T. D. P. Stack, Org. Lett. 2004, 6, 3119–
1
Ligand 3b: H NMR (400.1 MHz, CDCl
CH ), 4.35 (dd, 2 H), 4.83 (dd, 2 H), 5.55 (dd, 2 H), 7.05–7.15 (m,
3
3
): δ = 2.51 (s, 3 H, Re–
3
122; d) E. M. McGarrigle, D. G. Gilheany, Chem. Rev. 2005,
4
H), 7.25–7.4 (m, 4 H), 7.9 (t, 1 H), 8.3 (dd, 2 H) ppm.
105, 1563–1602; e) B. Kang, M. Kim, J. Lee, Y. Do, S. Chang,
1
Ligand 4b: H NMR (400.1 MHz, CDCl
3
): δ = 2.49 (s, 3 H, Re–
J. Org. Chem. 2006, 71, 6721–6727; f) I. Garcia-Bosch, A.
Company, X. Fontrodona, X. Ribas, M. Costas, Org. Lett.
3
CH ), 4.15 (dd, 2 H), 4.5 (dd, 2 H), 5. 6 (dd, 2 H), 7.36–7.42 (m,
2008, 10, 2095–2098.
10 H), 7.93 (t, 1 H), 8.3 (dd, 2 H) ppm.
[
5] For reviews on iron-based catalysts, see: a) B. S. Lane, K. Bur-
gess, Chem. Rev. 2003, 103, 2457–2473; b) C. Bolm, J. Legros,
J. Le Paih, L. Zani, Chem. Rev. 2004, 104, 6217–6254; c) M.
Costas, M. P. Mehn, M. P. Jensen, L. Que, Jr., Chem. Rev.
2004, 104, 939–986; d) E. B. Bauer, Curr. Org. Chem. 2008, 12,
General Procedure for the Epoxidation of Olefins with H
3 mol-%), ligand (12 mol-%), olefin (1 mmol), and CH
2
O
2
: MTO
(
2
Cl
2
(2 mL)
were added to a 50 mL round-bottomed flask at room temperature.
The mixture was stirred for a few minutes, and than dodecane (GC
internal standard, 100 μL) was added. The reaction was directly
1
341–1369; e) K. Schröder, K. Junge, B. Bitterlich, M. Beller,
Top. Organomet. Chem. 2011, 33, 83–109; f) K. Junge, K.
Schröder, M. Beller, Chem. Commun. 2011, 47, 4849–4859; for
recent iron-catalyzed oxidations, see: g) M. R. Bukowski, P.
Comba, A. Lienke, C. Limberg, C. L. de Laorden, R. Mas-
Ballesté, M. Merz, L. Que, Jr., Angew. Chem. 2006, 118, 3524–
2 2
started by adding 30% H O (2 equiv.), and the mixture was stirred
vigorously in air for 19 h. The conversion and yield were deter-
mined by GC analysis without further manipulations and were
compared with authentic samples. The yield was determined by GC
(30 m HP 5 Agilent Technologies 50–300 °C) based on the internal
3528; Angew. Chem. Int. Ed. 2006, 45, 3446–3449; h) S. Taktak,
standard (calibration curve) and the enantioselectivity (ee values)
was determined by chiral HPLC: trans-stilbene: Reposil 100; elu-
ent: n-hexane/ethanol (99:1); flow: 1.0 mLmin ; styrene: Chi-
ralPAK AD-H; eluent: n-hexane/2-propanol (99.95:0.05); flow:
W. Ye, A. M. Herrera, E. V. Rybak-Akimova, Inorg. Chem.
2007, 46, 2929–2942; i) A. Company, L. Gmez, M. Gell, X.
Ribas, J. M. Luis, L. Que, Jr., M. Costas, J. Am. Chem. Soc.
–
1
2
007, 129, 15766–15767; j) M. S. Chen, M. C. White, Science
2007, 318, 783–787; k) M. S. Chen, M. C. White, Science 2010,
27, 566–571; l) M. Wu, C. Miao, S. Wong, H. Xue, C. Xia,
–1
1.0 mLmin ; 1-phenylcyclohexene: ChiralPAK AD-H; eluent: n-
3
–
1
hexane/2-propanol (99.95:0.05); flow: 1.0 mLmin ; β-methylstyr-
ene: Chiralcel OD-H; eluent: n-hexane/ethanol (99.95:0.05); flow:
F. E. Kühn, W. Son, Adv. Synth. Catal. 2011, 353, 3014–3022;
m) B. Join, K. Möller, C. Ziebart, K. Schröder, D. Gördes, K.
Thurow, A. Spannenberg, K. Junge, M. Beller, Adv. Synth. Ca-
tal. 2011, 353, 3023–3030.
–1
1.0 mLmin ; p-chlorostyrene: ChiralPAK AD-H; eluent: n-hept-
–1
ane/ethanol (98:2); flow: 0.5 mLmin ; p-bromostyrene: Chi-
ralPAK AD-H; eluent: n-heptane/ethanol (98:2); flow:
[6] a) W. A. Herrmann, W. Wagner, U. N. Flessner, U. Volkhardt,
H. Komber, Angew. Chem. 1991, 103, 1704–1706; Angew.
Chem. Int. Ed. Engl. 1991, 30, 1636–1638; b) W. A. Herrmann,
R. W. Fischer, D. W. Marz, Angew. Chem. 1991, 103, 1706–
1709; Angew. Chem. Int. Ed. Engl. 1991, 30, 1638–1641; c)
W. A. Herrmann, M. Wang, Angew. Chem. 1991, 103, 1709–
–1
0.5 mLmin ; (E)-2-(4-butylstyryl)naphthalene: Reposil 100; elu-
–1
ent: n-heptane/ethanol (98:2); flow: 1.0 mLmin ; (E)-1,2-bis(4-bu-
tylphenyl)ethene: Reposil 100; eluent: n-heptane/ethanol (98:2);
flow: 1.0 mLmin ).
–1
1711; Angew. Chem. Int. Ed. Engl. 1991, 30, 1641–1643; d) F. E.
Kühn, A. M. Santos, P. W. Roesky, E. Herdtweck, W. Scherer,
P. Gisdakis, I. V. Yudanov, C. Di Valentin, N. Rösch, Chem.
Eur. J. 1999, 5, 3603–3615; e) F. E. Kühn, A. Scherbaum, W. A.
Herrmann, J. Organomet. Chem. 2004, 689, 4149–4164; f) G.
Soldaini, Synlett 2004, 1849–1850; g) F. E. Kühn, A. M. San-
tos, W. A. Herrmann, Dalton Trans. 2005, 2483–2491; h) F. E.
Kühn, J. Zhao, W. A. Herrmann, Tetrahedron: Asymmetry
2005, 16, 3469; i) M. Zhou, J. Zhao, J. Li, S. Yue, C. Bao, J.
Acknowledgments
K. K. thanks Dr. D. Michalik for the NMR spectroscopy measure-
ments and is grateful to Dr. B. Join and Dr. K. Schröder for helpful
discussions. The authors thank Dr. C. Fischer, S. Buchholz, S.
Schareina, A. Koch, and K. Fiedler (all at the Leibniz-Institut für
Katalyse e.V.) for excellent analytical and technical support.
Eur. J. Inorg. Chem. 2012, 5972–5978
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
5977