r-F lu or otr op in on e Im m obilized on Silica : A New Ster eoselective
Heter ogen eou s Ca ta lyst for Ep oxid a tion of Alk en es w ith Oxon e
,
†
,‡
†
†
Giovanni Sartori,* Alan Armstrong,* Raimondo Maggi, Alessandro Mazzacani,
†
†
‡
Raffaella Sartorio, Franca Bigi, and Belen Dominguez-Fernandez
Clean Synthetic Methodologies Group, Dipartimento di Chimica Organica e Industriale dell’Universit a` ,
Parco Area delle Scienze 17A, I-43100 Parma, Italy, and Department of Chemistry,
Imperial College of Science, Technology and Medicine, London SW7 2AY, United Kingdom
Received J anuary 15, 2003
The dioxirane-mediated epoxidation of alkenes in the presence of supported R-fluorotropinones 5
and 9 has been evaluated. The catalysts anchored onto silica supports 5 have shown comparable
activity with respect to the homogeneous counterpart 10 and good stability on recycling. In the
second part of this paper the enantiomerically enriched R-fluorotropinone 4* was anchored onto
both mesoporous MCM-41 and amorphous KG-60 silicas. The chiral-supported catalysts promoted
the stereoselective epoxidation of several trans-substituted and trisubstituted alkenes with ee values
up to 80% and were perfectly reusable with the same performance for at least three catalytic cycles.
In tr od u ction
can be utilized as isolated pure reagents or, more
conveniently, generated in situ by oxidation of ketones
Preparation of fine chemicals by catalytic oxidation1
with particular interest in nonracemic epoxides has been
extensively studied in recent years since these com-
pounds represent useful building blocks in stereoselective
7
with Oxone (2KHSO
5
‚KHSO
4
‚K
2
SO
4
). The entire oxida-
tive process consists of a ketone-mediated oxygen transfer
from Oxone to the selected substrate affording the
oxidation product and restoring the starting ketone,
which is consequently required in catalytic amount.
2
synthesis, and the epoxide functionality constitutes the
essential framework of various naturally occurring and
Some of the most efficient ketones useful in this
reaction are expensive and/or undergo unwanted side
3
biologically active compounds. Among the impressive
number of papers published on this topic, some general
methods appear as fundamental routes for the synthesis
of enantiomerically enriched epoxides. These include
reactions with the oxidant, i.e. Baeyer-Villiger oxidation,
dimerization, etc.6
The heterogenization of the ketone by supporting it on
an insoluble material increases its stability, allows its
easy recovery and reuse, and makes easier the reaction
workup and product purification.8
4
metal-catalyzed synthesis such as the Sharpless- and
the J acobsen-type5 approaches and the use of chiral
6
oxidizing nonmetal reagents such as dioxiranes. These
compounds represent classes of versatile and powerful
oxidants showing a widespread applicability. Dioxiranes
9
In view of the increasing interest in this field and in
continuation of our involvement in this area,1 we report
here the preparation and use of an R-fluorotropinone
derivative supported on silica materials, providing ef-
ficient and reusable solid catalysts for the epoxidation
0
*
To whom correspondence should be addressed.
Parma University.
Imperial College London.
†
‡
(1) (a) Arends, I. W. C. E.; Sheldon, R. A.; Wallau, M.; Schuchardt,
U. Angew. Chem., Int. Ed., Engl. 1997, 36, 1144. (b) Sheldon, R. A.
Chemtech 1991, 566.
(7) (a) Curci, R. In Advances in Oxygenated Process; Baumstark, A.
L., Ed.; J AI: Greenwich CT, 1990; Vol. 2, Chapter 1, p 1. (b) Adam,
W.; Hadjiarapoglou, L. P.; Curci, R.; Mello, R. In Organic Peroxides;
Ando, W., Ed.; J ohn Wiley & Sons: New York, 1992; Chapter 4, p 195.
(c) Adam, W.; Smerz, A. K. Bull. Soc. Chim. Belg. 1996, 105, 581. (d)
Adam, W.; Smerz, A. K.; Zhao, C.-J . J . Prakt. Chem. 1997, 339, 298
and references therein.
(8) (a) Boehlow, T. R.; Buxton, P. C.; Grocock, E. L.; Marples, B. A.;
Waddington, V. L. Tetrahedron Lett. 1998, 39, 1839. (b) Shiney, A.;
Rajan, P. K.; Sreekumar, K. Polym. Int. 1996, 41, 377. (c) Song, C. E.;
Lim, J . S.; Kim, S. C.; Lee, K.-J .; Chi, D. Y. Chem. Commun. 2000,
2415.
(2) (a) Sharpless, K. B. Aldrichim. Acta 1983, 16, 67. (b) Behrens,
C. H.; Katsuki, T. Coord. Chem. Rev. 1995, 140, 189. (c) Tokunaga,
M.; Larrow, J . F.; Kakiuchi, F.; J acobsen, E. N. Science, 1997, 277,
9
36. (d) Bonini, C.; Righi, G. Tetrahedron 2002, 58, 4981.
3) See, for example: (a) Paquette, L. A.; Gao, Z.; Ni, Z.; Smith, G.
(
F. J . Am. Chem. Soc. 1998, 120, 2543. (b) Taylor, R. J . K.; Alcaraz, L.;
Kapfer-Eyer, I.; Macdonald, G.; Wei, X.; Lewis, N. Synthesis 1998, 775.
(4) J ohnson, R. A.; Sharpless, K. B. Addition Reactions with Forma-
tion of Carbon-Oxygen Bonds (II): Asymmetric Methods of Epoxidation
in Comprehensive Organic Synthesis; Trost, B. M., Fleming, J ., Eds;
Pergamon Press: Oxford, 1991; Vol. 7, p 389.
(
5) (a) Zhang, W.; Loebach, J . L.; Wilson, S. R.; J acobsen, E. N. J .
(9) Chiral Catalyst Immobilization and Recycling; De Vos, D. E.,
Vankelecom, I. F. J ., J acobs, P. A., Eds; Wiley-VCH: Weinheim,
Germany, 2000.
(10) (a) Bigi, F.; Moroni, L.; Maggi, R.; Sartori, G. Chem. Commun.
2002, 716. (b) Carloni, S.; De Vos, D. E.; J acobs, P. A.; Maggi, R.;
Sartori, G.; Sartorio, R. J . Catal. 2002, 205 (1), 199. (c) Demicheli, G.;
Maggi, R.; Mazzacani, A.; Righi, P.; Sartori, G.; Bigi, F. Tetrahedron
Lett. 2001, 42, 2401.
Am. Chem. Soc. 1990, 112, 2801. (b) J acobsen, E. N.; Wu, M. H. In
Comprehensive Asymmetric Catalysis; J acobsen, E. N., Pfaltz, A.,
Yamamoto, H., Eds; Springer: Berlin, Germany, 1999; Vol. II, p 649.
(6) (a) Murray, R. W. Chem. Rev. 1989, 89, 1187. (b) Curci, R.; Dinoi,
A.; Rubino, M. F. Pure Appl. Chem. 1995, 67, 811. (c) Adam, W.; Saha-
Moller, C. R.; Ganeshpure, P. A. Chem. Rev. 2001, 101, 3499. (d) Frohn,
M.; Shi, Y. Synthesis 2000, 1979.
1
0.1021/jo034044c CCC: $25.00 © 2003 American Chemical Society
Published on Web 03/22/2003
3
232
J . Org. Chem. 2003, 68, 3232-3237