T. Mitra et al. / Tetrahedron Letters 51 (2010) 2828–2831
2831
Table 2a
4. (a) Liu, G.; Zhou, Y.; Ye, D.; Zhang, D.; Ding, X.; Jiang, H.; Liu, H. Adv. Synth. Catal.
2009, 351, 2605; (b) Bian, M.; Yao, W.; Ding, H.; Ma, C. J. Org. Chem. 2010, 75,
269; (c) Varela-Ferna´ndez, A.; Gonza´lez-Rodr´ıguez, C.; Varela, J. A.; Castedo, L.;
Saa´, C. Org. Lett. 2009, 11, 5350.
RNase A inhibition studies by gel electrophoresis; compounds were taken in MeOH at
1.15 mM concentration
Lane
Content
Relative intensity
5. (a) Mellons, J. W. Nat. Med. 1996, 2, 274; (b) Petit, S. C.; Simsic, J.; Michael, S. F.;
Swanstrom, R. Perspect. Drug Discovery Des. 1993, 1, 69; (c) Darke, P. L.; Huff, J.
R. Adv. Pharmacol. 1994, 25, 399.
6. (a) Back, T. G. Tetrahedron 2001, 57, 5263; (b) Basak, A.; Khamrai, U. K.
Tetrahedron Lett. 1995, 36, 7913; (c) Basak, A.; Mandal, S.; Das, A. K.; Bertolasi,
V. Bioorg. Med. Chem. Lett. 2002, 12, 873; (d) Basak, A.; Khamrai, U. K.; Mallik, U.
Chem. Commun. 1996, 749.
1
2
3
4
5
RNA
1
RNA + RNase A
RNA + RNase A + 8
RNA + RNase A + 7d
RNA + RNase A + 9
0.0319
0.2115
0.8985
0.1144
7. (a) Garratt, P. J.; Neoh, S. B. J. Org. Chem. 1979, 44, 2667; (b) Cheng, Y. S. P.;
Garratt, P. J.; Neoh, S. B.; Rumjanek, V. H. Isr. J. Chem. 1985, 26, 101; (c)
Braverman, S.; Duar, Y.; Segev, D. Tetrahedron Lett. 1979, 17, 3181; (d) Zafrani,
Y.; Gottlieb, H. E.; Sprecher, M.; Braverman, S. J. Org. Chem. 2005, 70, 10166.
8. (a) Sonogashira, K.; Tohoda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467;
(b) Takahashi, S.; Kuroyama, Y.; Sonogashira, K.; Hagihara, N. Synthesis 1980,
627.
Table 2b
RNase A inhibition studies of compounds 8 and 7d at different concentration
9. (a) Jones, G. B.; Weight, J. M.; Hynd, G.; Wyatt, J. K.; Rarner, P. M.; Huber, R. S.;
Li, A.; Kilgore, M. W.; Sticca, R. P.; Pollenz, R. S. J. Org. Chem. 2002, 67, 5727; (b)
Basak, A.; Bag, S. S.; Das, A. K. Eur. J. Org. Chem. 2005, 7, 1239.
Lane
Content
Relative intensity
1
2
3
4
5
6
RNA
RNA + RNase A
RNA + RNase A + 8 (1 mg/mL)
RNA + RNase A + 8 (2 mg/mL)
RNA + RNase A + 7d (1 mg/mL)
RNA + RNase A + 7d (2 mg/mL)
1
0.3689
0.5800
0.6173
0.9720
0.9915
10. The absence of any NOE between the H-8 and the H
a or the methyl in the
alanine based isochromene 7a suggested a Z-configuration of the imine (for
NOESY spectrum, see Supplementary data).
11. (a) Lee, J. H.; Park, Y. J.; Kim, H. S.; Hong, Y. S.; Kim, K.-W.; Lee, J. J. J. Antibiot.
2001, 54, 463; (b) Nakashima, T.; Hirano, S.; Agata, N.; Kumagai, H.; Isshiki, K.;
Yoshioka, T.; Ishizuka, M.; Maeda, K.; Takeuchi, T. J. Antibiot. (Tokyo) 1999, 52,
426; (c) Agata, N.; Nogi, H.; Milhollen, M.; Kharbanda, S.; Kufe, D. Cancer Res.
2004, 64, 8512; (d) Agata, N.; Hirano, S.; Abe, C.; Nakashima, T.; Tsuchiya, A.;
Kumagai, H.; Isshiki, K.; Yoshioka, T.; Ishizuka, M.; Takeuchi, T. Res. Commun.
Mol. Pathol. Pharmacol. 2000, 108, 297.
of amides is more facile than the Garratt–Braverman cyclization
pathway which takes place at room temperature in aryl-substi-
tuted allenes. Our observation is similar to our recently reported
synthesis of bis-indoles involving nucleophilic addition of amide
nitrogen to allenic sulfones15 as well as cleavage of DNA via alkyl-
ation pathway.16 The newly synthesized bis-isochromenes and the
biscoumarin possess strong RNase A inhibition activity thus dem-
onstrating the potential importance of these compounds.
12. (a) Raines, R. T. Chem. Rev. 1998, 98, 1045; (b) Vallee, B. L.; Riordan, J. F. Cell.
Mol. Life Sci. 1997, 53, 803.
13. (a) Folkman, J.; Klagsbrun, M. Science 1987, 235, 442; (b) Riordan, J. F. In
Ribonucleases: Structure and Function; D’Alessio, G., Riordan, J. F., Eds.;
Academic Press: New York, 1997; p 445; (c) Fett, J. W.; Strydom, D. J.; Lobb,
R. R.; Alderman, E. M.; Bethune, J. L.; Riordan, J. F.; Vallee, B. L. Biochemistry
1985, 24, 5480; (d) Maity, T. K.; De, S.; Dasgupta, S.; Pathak, T. Bioorg. Med.
Chem. 2006, 14, 1221.
14. Incubation condition: The incubation was done at rt in MeOH for 2 h. For Figure
3a, a 1.15 mM stock solution of each of 7d, 8 and 9 was used. For Figure 3b, the
concentrations of the compounds 7d and 8 are the concentrations of the stock
(effective concentrations are three times less). The stock concentrations of the
Acknowledgements
RNA and RNase A are 10 mg/mL and 0.8
lM, respectively.
DST is thanked for providing a research grant and also for
400 MHz NMR facility under the IRPHA programme. T.M. is grate-
ful to CSIR, Government of India for a fellowship. Authors also
thank Mr. Sanjay Pratihar for his help in solving the crystal
structure.
15. Mitra, T.; Das, S.; Basak, A. Tetrahedron Lett. 2009, 50, 5846.
16. Nicolaou, K. C.; Dai, W.-M. Angew. Chem., Int. Ed. Engl. 1991, 30, 1387.
Spectral data of selected compounds: All the 1H and 13C NMR spectra were
recorded at 400 and 100 MHz, respectively, in CDCl3. Specific rotation was
measured in CHCl3.
For 7a: dH 8.26 (d, J = 7.2 Hz, 2H), 7.51–7.14 (m, 16H), 6.28 (s, 2H), 5.23–5.09
(m, 4H), 4.69 (app. q, J = 7.0 Hz, 2H), 3.98 (d, J = 14.4 Hz, 2H), 3.79 (d,
J = 14.4 Hz, 2H), 1.56 (d, J = 7.0 Hz, 6H); dC 175.1, 155.3, 135.9, 128.8, 127.1,
125.6, 123.4, 121.5, 115.6, 114.1, 80.2, 53.1, 51.7, 28.3, 18.6; ½a D25
ꢂ44.5 (c
ꢁ
Supplementary data
0.25); MS: m/z = 727.34 [MNa+], 705.33 [MH+]; HRMS: calcd for
C40H36N2O8S + H+ 705.2272 found 705.2275.
Supplementary data associated with this article can be found, in
For 7d: dH 8.21 (d, J = 7.6 Hz, 2H), 7.42–7.13 (m, 24H), 7.00 (d, J = 7.6 Hz, 2H),
6.14 (s, 2H), 5.11 (s, 4H), 4.79 (dd, J = 8.0, 6.0 Hz, 2H), 3.69 (dd, J = 29.8, 14.8 Hz,
4H), 3.28 (dd, J = 13.2, 5.6 Hz, 2H), 3.17 (dd, J = 13.2, 8.0 Hz, 2H); dC 172.0,
142.3, 138.3, 135.8, 132.2, 131.4, 129.6, 129.1, 128.4, 128.3, 128.1, 127.3, 126.4,
References and notes
125.4, 108.8, 66.5, 60.8, 57.0, 39.9; ½a D25
ꢂ49.9 (c 0.25); MS: m/z = 879.22
ꢁ
[MNa+], 857.25 [MH+]; HRMS: calcd for C52H44N2O8S + H+ 857.2899 found
857.2888.
1. (a) Larsen, T. O.; Breinholt, J. J. Nat. Prod. 1999, 62, 1182; (b) Lee, J. J.; Kim, H.-S.;
Lee, J.-H.; Hong, Y.-S.; Park, Y. J. PCT Int. Appl. WO 2000075124.
For 8: dH 8.25 (d, J = 5.6 Hz, 1H), 7.72 (d, J = 7.2 Hz, 2H), 7.55–7.13 (m, 16H),
6.08 (s, 1H), 5.11 (dd, J = 22.8, 12.4 Hz, 2H), 3.96–3.93 (m, 1H), 3.71 (dd,
J = 24.0, 14.4 Hz, 2H), 3.13–3.08 (m, 1H), 3.01–2.96 (m, 1H); dC 172.8, 143.1,
138.3, 138.1, 135.9, 134.1, 132.3, 131.7, 129.5, 129.4, 129.2, 129.0, 128.5, 128.4,
2. (a) Wang, B.; Li, M.; Xu, S.; Song, H.; Wang, B. Synthesis 2007, 1643; (b) Alper, P.
B.; Nguyen, K. T. J. Org. Chem. 2003, 68, 2051; (c) Hudson, A. R.; Roach, S. L.;
Higuchi, R. I.; Phillips, D. P.; Bissonnette, R. P.; Lamph, J.; Yen, W. W.; Li, Y.;
Adams, M. E.; Valdez, L. J.; Vassar, A.; Cuervo, C.; Kallel, E. A.; Gharbaoui, C. J.;
Mais, D. E.; Miner, J. N.; Marschke, K. B.; Rungta, D.; Negro-Vilar, A.; Zhi, L. J.
Med. Chem. 2007, 50, 4699; (d) Faggi, C.; Garcia-Valverde, M.; Marcaccini, S.;
Menchi, G. Org. Lett. 2010, 12, 788.
3. (a) Soulie, P.; Gamelin, E.; Eder, J. Proc. Am. Soc. Clin. Oncol. 2003, Abstract No.
777.; (b) Bonate, P.; Eder, J.; Soulie, P. Proc. Am. Soc. Clin. Oncol. 2003, Abstract
No. 537.; (c) Kawano, T.; Agata, N.; Kharbanda, S.; Avigan, D.; Kufe, D. Cancer
Chemother. Pharmacol. 2007, 59, 329.
128.3, 128.0, 127.4, 126.4, 125.4, 116.1, 1.8.6, 66.4, 60.2, 60.1, 39.6; ½a D28
ꢂ31.4
ꢁ
(c 0.25); MS: m/z = 560.06 [MNa+], 538.08 [MH+]; HRMS: calcd for
C32H27NO5S + H+ 538.1689 found 538.1685.
For 9: dH 8.29 (d, J = 8.0 Hz, 2H), 7.76 (t, J = 7.6 Hz, 2H), 7.58 (t, J = 7.6 Hz, 2H),
7.48 (d, J = 8.0 Hz, 2H), 6.77 (s, 2H), 4.37 (s, 4H); dC 161.2, 144.2, 135.9, 135.2,
129.8, 128.5, 126.2, 120.8, 110.2, 57.8; MS: m/z = 405.28 [MNa+], 383.28 [MH+];
HRMS: calcd for C20H14O6S + H+ 383.0590 found 383.0596.