Alkylhalocarbenes from Non-Nitrogenous Precursors
J. Phys. Chem. A, Vol. 102, No. 9, 1998 1513
∞
Relative values of Ay are collected in Table 3 along with
as a function of alkene as in the original study involving
diazirines.1 This work is in progress and will be reported
shortly.17
the values obtained previously with the diazirine precursors and
the yield of phenanthrene obtained upon continuous photolysis
of 8a-g at 300 nm. In each column, the yield of the appropriate
quantity obtained with precursors of chloromethylcarbene is
defined as unity. Comparisons within a vertical column are
meaningful. Comparisons across a horizontal row are useful
only in a qualitative sense.
A plot of the yield of phenanthrene versus the yield of
pyridine ylides 4b-h in isooctane is shown in Figure 4. The
plot is linear with a slope of 0.65.
Acknowledgment. Support of this work by the National
Science Foundation (CHE-8814950, The Ohio State University,
and CHE-9122141 and CHE-9616388, University of New
Hampshire) is gratefully acknowledged.
References and Notes
(1) (a) Tomioka, H.; Hayashi, N.; Izawa, Y.; Liu, M. T. H. J. Am.
Chem. Soc. 1984, 106, 6, 454. (b) Liu, M. T. H.; Soundararajan, N.; Paike,
N.; Subramanian, R. J. Org. Chem. 1987, 52, 2, 4223. (c) Liu, M. T. H.;
Bonneau, R. J. Am. Chem. Soc. 1990, 112, 3915. (d) Liu, M. T. H.; Chishti,
N. H.; Tencer, M.; Tomioka, H.; Izawa, Y. Tetrahedron 1984, 40, 887. (e)
Liu, M. T. H.; Suresh, R. J. Org. Chem. 1989, 54, 486. (f) Liu, M. T. H.;
Bonneau, R.; Wierlacher, S.; Sander, W. J. Photochem. Photobiol. A: Chem.
1994, 84, 133. (g) Wierlacher, S.; Sander, W.; Liu, M. T. H. J. Am. Chem.
Soc. 1993, 115, 8943. (h) Bonneau, R.; Liu, M. T. H. J. Photochem.
Photobio. A: Chem. 1992, 68, 97. (i) Liu, M. T. H. Acc. Chem. Res. 1994
27, 287. (j) Bonneau, R.; Liu, M. T. H. J. Am. Chem. Soc. 1996, 118, 8098.
(k) Bonneau, R.; Liu, M. T. H. J. Am. Chem. Soc. 1996, 118, 8, 3829.
(2) Houk, K. N.; Rondan, N. G.; Marada, J. Tetrahedron 1985, 41,
1555.
(3) (a) Frey, H. M. J. Chem. Soc. 1962, 2293. (b) Kibby, C. L.;
Kistiakowsky, G. B. J. Phys. Chem. 1966, 70, 126. (c) Frey, H. M.; Stevens,
I. D. R. Proc. Chem. Soc. 1962, 79. (d) Frey, H. M.; Stevens, I. D. R. J.
Chem. Soc. 1962, 3865. (e) Mansoor, A. M.; Stevens, I. D. R. Tetrahedron
Lett. 1966, 1733. (f) Frey, H. M.; Stevens, I. D. R. J. Am. Chem. Soc. 1965,
87, 1. (g) Frey, H. M. J. Am. Chem. Soc. 1962, 84, 2647. (h) Frey, H. M.
AdV. Photochem. 1964, 4, 225. (i) Friedman, L.; Shechter, H. J. Am. Chem.
Soc. 1959, 81, 5512. (j) Frey, H. M.; Stevens, I. D. R. J. Chem. Soc. 1965,
3101. (k) Chang, K.-T.; Shechter, H. J. Am. Chem. Soc. 1979, 101, 5082.
(4) (a) Moss, R. A. Pure Appl. Chem. 1995, 67, 741. (b) Moss, R. A.;
Turro, M.-J. In In Kinetics and Spectroscopy of Carbenes and Biradicals;
Platz, M. S., Ed.; Plenum: New York, 1990; p 213. (c) Platz, M. S.; White,
W. R., III; Modarelli, D. A.; Celebi, S. A. Res. Chem. Intermed. 1994,
175-193. (d) Chidester, W.; Modarelli, D. A.; White, W. R., III; Whitt, D.
E.; Platz, M. S. J. Phys. Org. Chem. 1994, 7, 24-27. (e) Jackson, J. E.;
Platz, M. S. In Laser Flash Photolysis Studies of Ylide Forming Reactions
of Carbenes; Brinker, U., Ed.; AdV. Carbene Chem. 1994, 1, 89-160, JAI
Press: Greenwich, CT.
(5) (a) White, W. R., III; Platz, M. S. J. Org. Chem. 1992, 17, 2841.
(b) Platz, M. S. AdV. Carbene Chem. II, in press. (c) Platz, M. S.; Modarelli,
D. A.; Morgan, S.; White, W. R.; Mullins, M.; Celebi, S. J.; Toscano, J.
P.; Huang, H. Prog. React. Kinet. 1994, 19, 93.
(6) The quantum yield of diazo formation from simple alkyl diazirines
has recently been determined. See: Bonneau, R.; Liu, M. T. H. J. Am.
Chem. Soc. 1996, 118, 7229.
(7) (a) Bigot, B.; Ponec, R.; Sevin, A.; Devaquet, A. J. Am. Chem.
Soc. 1978, 100, 6573. (b) Mu¨ller-Remmers, P. L.; Jug, K.; J. Am. Chem.
Soc. 1985, 107, 7275. (c) Yamamoto, N.; Bernardi, F.; Bottoni, A.; Olivucci,
M.; Robb, M. A.; Wilsey, S. J. Am. Chem. Soc. 1978, 116, 2064.
(8) Intuition is supported by the calculations of Sulzbach and Hadad
(unpublished research at The Ohio State University).
IV. Discussion
The yield of ylide 4b-h varies by a factor of 47.5 from the
tert-butylchloro- to isopropylchlorocarbene systems using di-
azirine precursors. This large spread can be attributed to
hydrogen migration in a carbene-pyridine complex 6 or to the
RIES mechanism (Scheme 3).
The carbene-pyridine complex mechanism predicts that the
relative yields of ylide will be independent of precursor. As
shown in Table 3, this clearly is not the case. The yield of
pyridine ylides derived from precursor 8 varies by only a factor
of 3. The dependence of the yield (Ay∞)) of carbene from
precursor 8 on the strength of the C-H bond alpha to the
carbene center is much less sensitive than that realized from
the diazirine precursors. In fact, the tert-butyl system, which
lacks a migratable hydrogen alpha to the carbene center, gives
roughly twice as much carbene, per laser flash, as does methyl,
which has such a hydrogen when using the diazirine as the
precursor. Yet in the phenanthridene series, the methyl
compound 8c produces more carbene, per laser pulse, than does
the tert-butyl analogue 8h. The data demonstrate that carbene-
pyridine complexes are simply not responsible for the variation
in the yield of ylides realized in LFP experiments. If such
complexes are formed, they must collapse cleanly to form the
ylide.
The RIES mechanism (Scheme 3) predicts that the yield of
ylide will correlate with the yield of phenanthrene (precursors
8b-h) or nitrogen (diazirines). This correlation is not possible
to study with diazirines because nitrogen is a reaction product
of both decay routes of the biradical. In the phenanthridene
series, phenanthrene should be formed in a stoichiometric yield
in pathways that produce a carbene. Indeed, as shown in Figure
4, the yield of phenanthrene does correlate with the yield of
carbene. However, the correlation is not perfect. A perfect
correlation would have a slope of 1.0. The deviation may be
due to the back reaction of carbene with phenanthrene, to reform
precursor, the efficiency of which is a function of carbene
structure. The deviation may also be due to the aforementioned
decomposition of certain precursors during GC analysis.
This study provides no evidence for or against the existence
of a carbene-pyridine complex. However, this work provides
conclusive evidence against the existence of carbene-pyridine
complexes that can rearrange to alkenes in competition with
collapse to form ylides. This work does not discredit the
mechanism of Scheme 2, in which a carbene-olefin complex
partitions between rearrangement and the formation of cyclo-
propanes. However, it certainly reduces the urgency to embrace
this concept.
(9) Robert, M.; Toscano, J. P.; Platz, M. S.; Abbot, S. C.; Kirchhoff,
M. M.; Johnson, R. P. J. Phys. Chem. 1996, 100, 18426.
(10) Chateauneuf, J. E.; Johnson, R. P.; Kirchhoff, M. M. J. Am. Chem.
Soc. 1990, 112, 3217.
(11) Hartwig, J. F.; Jones, M., Jr.; Moss, R. A.; Lawrynowicz, W.
Tetrahedron Lett. 1986, 27, 5907.
(12) To our knowledge trimethylene type biradicals are not known to
thermally fragment to form carbenes and alkenes. See: Gajewski, J. J.
Hydrocarbon Thermal Isomerization; Academic Press: New York, 1981,
Chapter 3.
(13) Halton, B.; Officer, D. L. Aust. J. Chem. 1983, 36, 1167.
(14) Gritsan, N. P.; Zhai, H. B.; Yuzawa, T.; Karweik, D.; Brooke, J.;
Platz, M. S. J. Phys. Chem. A 1997, 101, 2833.
(15) (a) LaVilla, J. A.; Goodman, J. C. J. Am. Chem. Soc. 1989, 111,
6877. (b) Liu, M. T. H.; Bonneau, R. J. Am. Chem. Soc. 1990, 118, 8098.
(c) Liu, M. T. H.; Bonneau, R. J. Am. Chem. Soc. 1992, 114, 3604.
(16) Handbook of Chemistry and Physics, 1991-1992, 72nd ed.; Lide,
D. R., ed., CRC Press: Boca Raton, FL, 156-160.
A definitive proof or disproof of the carbene-olefin complex
postulate is available using 8f and repeating the product analysis
(17) Nigam, M.; Platz, M. S. Unpublished research at The Ohio State
University.