10.1002/chem.201901686
Chemistry - A European Journal
(20) Frogneux, X.; Jacquet, O.; Cantat, T. Iron-Catalyzed Hydrosilylation of
CO2: CO2 Conversion to Formamides and Methylamines. Catal. Sci.
Technol. 2014, 4, 1529–1533.
Acids, Ketones and Aldehydes Using Tetrabutylammonium Fluoride (or
Triton ® B) and Polymethylhydrosiloxane. Synlett 1997, 1997, 989–991.
(39) Revunova, K.; Nikonov, G. I. Base-Catalyzed Hydrosilylation of
Ketones and Esters and Insight into the Mechanism. Chem. - A Eur. J.
2014, 20, 839–845.
(21) Nguyen, T. V. Q.; Yoo, W.-J.; Kobayashi, S. Effective Formylation of
Amines with Carbon Dioxide and Diphenylsilane Catalyzed by
Chelating Bis( Tz NHC) Rhodium Complexes. Angew. Chem. Int. Ed.
2015, 54, 9209–9212.
(40) Xie, C.; Song, J.; Wu, H.; Zhou, B.; Wu, C.; Han, B. Natural Product
Glycine Betaine as an Efficient Catalyst for Transformation of CO2 with
Amines to Synthesize N -Substituted Compounds. ACS Sustain. Chem.
Eng. 2017, 5, 7086–7092.
(22) Wang, M.-Y.; Wang, N.; Liu, X.-F.; Qiao, C.; He, L.-N. Tungstate
Catalysis: Pressure-Switched
2-
and
6-Electron
Reductive
Functionalization of CO2 with Amines and Phenylsilane. Green Chem.
2018, 20, 1564–1570.
(41) Zhou, H.; Wang, G.-X.; Zhang, W.-Z.; Lu, X.-B. CO 2 Adducts of
Phosphorus Ylides: Highly Active Organocatalysts for Carbon Dioxide
Transformation. ACS Catal. 2015, 5, 6773–6779.
(23) Motokura, K.; Takahashi, N.; Kashiwame, D.; Yamaguchi, S.; Miyaji, A.;
Baba, T. Copper-Diphosphine Complex Catalysts for N-Formylation of
Amines under 1 Atm of Carbon Dioxide with Polymethylhydrosiloxane.
Catal. Sci. Technol. 2013, 3, 2392–2396.
(42) Liu, X.-F.; Qiao, C.; Li, X.-Y.; He, L.-N. Carboxylate-Promoted
Reductive Functionalization of CO2 with Amines and Hydrosilanes
under Mild Conditions. Green Chem. 2017, 19, 1726–1731.
(43) Bordwell, F. G. Equilibrium Acidities in Dimethyl Sulfoxide Solution.
Acc. Chem. Res. 1988, 21, 456–463.
(24) Zhang, S.; Mei, Q.; Liu, H.; Liu, H.; Zhang, Z.; Han, B. Copper-
Catalyzed N-Formylation of Amines with CO2 under Ambient
Conditions. RSC Adv. 2016, 6, 32370–32373.
(44) Gaylord Chemical Corporation. Technical Bulletin Reaction Solvent
Dimethyl Sulfoxide (DMSO); 1970.
(25) Luo, R.; Lin, X.; Chen, Y.; Zhang, W.; Zhou, X.; Ji, H. Cooperative
Catalytic Activation of Si−H Bonds: CO2 -Based Synthesis of
Formamides from Amines and Hydrosilanes under Mild Conditions.
ChemSusChem 2017, 10, 1224–1232.
(45) Wang, C.; Luo, X.; Luo, H.; Jiang, D.; Li, H.; Dai, S. Tuning the Basicity
of Ionic Liquids for Equimolar CO2 Capture. Angew. Chem. Int. Ed.
2011, 50, 4918–4922.
(26) Gurau, G.; Rodríguez, H.; Kelley, S. P.; Janiczek, P.; Kalb, R. S.;
Rogers, R. D. Demonstration of Chemisorption of Carbon Dioxide in
1,3-Dialkylimidazolium Acetate Ionic Liquids. Angew. Chem. Int. Ed.
Engl. 2011, 50, 12024–12026.
(46) Koppel, I.; Koppel, J.; Degerbeck, F.; Grehn, L.; Ragnarsson, U. Acidity
of Imidodicarbonates and Tosylcarbamates in Dimethyl Sulfoxide.
Correlation with Yields in the Mitsunobu Reaction. J. Org. Chem. 1991,
56, 7172–7174.
(27) Mao, J. X.; Steckel, J. A.; Yan, F.; Dhumal, N.; Kim, H.; Damodaran, K.
(47) Zhou, Q.; Li, Y. The Real Role of N-Heterocyclic Carbene in Reductive
Functionalization of CO2: An Alternative Understanding from Density
Functional Theory Study. J. Am. Chem. Soc. 2015, 137, 10182–10189.
(48) Zhang, C.; Lu, Y.; Zhao, R.; Menberu, W.; Guo, J.; Wang, Z.-X. A
Comparative DFT Study of TBD-Catalyzed Reactions of Amines with
CO2 and Hydrosilane: The Effect of Solvent Polarity on the Mechanistic
Preference and the Origins of Chemoselectivities. Chem. Commun.
2018, 54, 10870–10873.
Understanding the Mechanism of CO Capture by 1,3 Di-Substituted
2
Imidazolium Acetate Based Ionic Liquids. Phys. Chem. Chem. Phys.
2016, 18, 1911–1917.
(28) Liu, M.; Gao, K.; Liang, L.; Wang, F.; Shi, L.; Sheng, L.; Sun, J. Insights
into Hydrogen Bond Donor Promoted Fixation of Carbon Dioxide with
Epoxides Catalyzed by Ionic Liquids. Phys. Chem. Chem. Phys. 2015,
17, 5959–5965.
(29) Gennen, S.; Alves, M.; Méreau, R.; Tassaing, T.; Gilbert, B.;
Detrembleur, C.; Jerome, C.; Grignard, B. Fluorinated Alcohols as
Activators for the Solvent-Free Chemical Fixation of Carbon Dioxide
into Epoxides. ChemSusChem 2015, 8, 1845–1849.
(49) Murphy, L. J.; Robertson, K. N.; Kemp, R. A.; Tuononen, H. M.;
Clyburne, J. A. C. Structurally Simple Complexes of CO2. Chem.
Commun. 2015, 51, 3942–3956.
(50) Costa, M.; Chiusoli, G. P.; Rizzardi, M. Base-Catalysed Direct
Introduction of Carbon Dioxide into Acetylenic Amines. Chem.
Commun. 1996, 0, 1699.
(30) Bobbink, F.; Vasilyev, D.; Hulla, M.; Chamam, S.; Menoud, F.;
Laurenczy, G.; Katsyuba, S. A.; Dyson, P. J. Intricacies of Cation-Anion
Combinations in Imidazolium Salt-Catalyzed Cycloaddition of CO2 into
Epoxides. ACS Catal. 2018, acscatal.7b04389.
(51) Krossing, I.; Slattery, J. M.; Daguenet, C.; Dyson, P. J.; Alla Oleinikova;
Weingärtner, H. Why Are Ionic Liquids Liquid? A Simple Explanation
Based on Lattice and Solvation Energies. J. Am. Chem. Soc. 2006,
128, 13427–13434.
(31) Jacquet, O.; Das Neves Gomes, C.; Ephritikhine, M.; Cantat, T.
Recycling of Carbon and Silicon Wastes: Room Temperature
Formylation of N-H Bonds Using Carbon Dioxide and
Polymethylhydrosiloxane. J. Am. Chem. Soc. 2012, 134, 2934–2937.
(32) Santos, L. S.; DaSilveira Neto, B. A.; Consorti, C. S.; Pavam, C. H.;
Almeida, W. P.; Coelho, F.; Dupont, J.; Eberlin, M. N. The Role of Ionic
Liquids in Co-Catalysis of Baylis-Hillman Reaction: Interception of
(52) Katsyuba, S. A.; Vener, M. V.; Zvereva, E. E.; Fei, Z.; Scopelliti, R.;
Laurenczy, G.; Yan, N.; Paunescu, E.; Dyson, P. J. How Strong Is
Hydrogen Bonding in Ionic Liquids? Combined X-Ray Crystallographic,
Infrared/Raman Spectroscopic, and Density Functional Theory Study.
J. Phys. Chem. B 2013, 117, 9094–9105.
Supramolecular
Species
via
Electrospray
Ionization
Mass
Spectrometry. J. Phys. Org. Chem. 2006, 19, 731–736.
(33) Gozzo, F. C.; Santos, L. S.; Augusti, R.; Consorti, C. S.; Dupont, J.;
Eberlin, M. N. Gaseous Supramolecules of Imidazolium Ionic
Liquids:ꢀ?Magic? Numbers and Intrinsic Strengths of Hydrogen Bonds.
Chem. - A Eur. J. 2004, 10, 6187–6193.
(34) Bini, R.; Bortolini, O.; Chiappe, C.; Pieraccini, D.; Siciliano, T.
Development of Cation/Anion “Interaction” Scales for Ionic Liquids
through ESI-MS Measurements. J. Phys. Chem. B 2007, 111, 598–604.
(35) Fujita, M.; Hiyama, T. Fluoride Ion-Catalyzed Reduction of Aldehydes
and Ketones with Hydrosilanes. Synthetic and Mechanistic Aspects and
an Application to the Threo-Directed Reduction of .Alpha.-Substituted
Alkanones. J. Org. Chem. 1988, 53, 5405–5415.
(36) Drew, M. D.; Lawrence, N. J.; Watson, W.; Bowles, S. A. The
Asymmetric Reduction of Ketones Using Chiral Ammonium Fluoride
Salts and Silanes. Tetrahedron Lett. 1997, 38, 5857–5860.
(37) Kobayashi, Y.; Takahisa, E.; Nakano, M.; Watatani, K. Reduction of
Carbonyl Compounds by Using Polymethylhydro-Siloxane: Reactivity
and Selectivity. Tetrahedron 1997, 53, 1627–1634.
(38) Drew, M.; Lawrence, N.; Fontaine, D.; Sehkri, L.; Bowles, S.; Watson,
W. A Convenient Procedure for the Reduction of Esters, Carboxylic
This article is protected by copyright. All rights reserved.