Inorganic Chemistry
Communication
(22) Barnea, E.; Moradove, D.; Berthet, J. C.; Ephritikhine, M.; Eisen,
M. S. Surprising activity of organoactinide complexes in the polymer-
ization of cyclic mono- and diesters. Organometallics 2006, 25, 320−322.
(23) Karmel, I. S. R.; Fridman, N.; Eisen, M. S. Actinide amidinate
complexes with a dimethylamine side arm: synthesis, structural
characterization, and reactivity. Organometallics 2015, 34, 636−643.
(24) Karmel, I. S. R.; Khononov, M.; Tamm, M.; Eisen, M. S. Uranium-
mediated ring-opening polymerization of ε-caprolactone: a comparative
study. Catal. Sci. Technol. 2015, 5, 5110−5119.
(25) Walshe, A.; Fang, J.; Maron, L.; Baker, R. J. New mechanism for
the Ring-Opening Polymerization of lactones uranyl aryloxide-induced
intermolecular catalysis. Inorg. Chem. 2013, 52, 9077−9086.
(26) Jantunen, K. C.; Batchelor, R. J.; Leznoff, D. B. Synthesis,
characterization, and organometallic derivatives of diamidosilyl ether
thorium(IV) and uranium(IV) halide complexes. Organometallics 2004,
23, 2186−2193.
(27) Zhang, W.; Xu, L.; Xi, Z. Recent development of synthetic
preparation methods for guanidines via transition metal catalysis. Chem.
Commun. 2015, 51, 254−265.
(28) Ishikawa, T.; Kumamoto, T. Guanidines in organic synthesis.
Synthesis 2006, 2006, 737−752.
(29) Zhang, W.; Nishiura, M.; Hou, Z. Alkali-metal-catalyzed addition
of primary and secondary phosphines to carbodiimides. A general and
efficient route to substituted phosphaguanidines. Chem. Commun. 2006,
3812−3814.
(30) Alonso-Moreno, C.; Antinolo, A.; Carrillo-Hermosilla, F.; Otero,
A. Guanidines: from classical approaches to efficient catalytic syntheses.
Chem. Soc. Rev. 2014, 43 (10), 3406−3425.
(31) Ong, T.-G.; O’Brien, J. S.; Korobkov, I.; Richeson, D. S.
Organometallics 2006, 25, 4728−4730.
(32) Coles, M. P.; Swenson, D. C.; Jordan, R. F.; Young, V. G.
Synthesis and structures of mono- and bis(amidinate) complexes of
aluminum. Organometallics 1997, 16, 5183−5194.
(33) Rowley, C. N.; DiLabio, G. A.; Barry, S. T. Theoretical and
synthetic investigations of carbodiimide insertions into Al−CH3 and
Al−N(CH3)2 bonds. Inorg. Chem. 2005, 44, 1983−1991.
(34) Ong, T.-G.; Yap, G. P. A.; Richeson, D. S. Catalytic construction
and reconstruction of guanidines: Ti-mediated guanylation of amines
and transamination of guanidines. J. Am. Chem. Soc. 2003, 125, 8100−
8101.
(35) Naktode, K.; Das, S.; Bhattacharjee, J.; Nayek, H. P.; Panda, T. K.
Imidazolin-2-iminato ligand-supported titanium complexes as catalysts
for the synthesis of urea derivatives. Inorg. Chem. 2016, 55, 1142−1153.
(36) Mukherjee, A.; Sen, T. K.; Mandal, S. K.; Maity, B.; Koley, D.
Construction of oxygen-bridged multimetallic assembly: dual catalysts
for hydroamination reactions. RSC Adv. 2013, 3, 1255−1264.
(37) Schweizer, P. D.; Wadepohl, H.; Gade, L. H. Titanium-catalyzed
hydrohydrazination of carbodiimides. Organometallics 2013, 32, 3697−
3709.
REFERENCES
■
(1) Stubbert, B. D.; Marks, T. J. Mechanistic investigation of
intramolecular aminoalkene and aminoalkyne hydroamination/cycliza-
tion catalyzed by highly electrophilic, tetravalent constrained geometry
4d and 5f complexes. evidence for an M−N σ-bonded insertive pathway.
J. Am. Chem. Soc. 2007, 129, 6149−6167.
(2) Haskel, A.; Straub, T.; Eisen, M. S. Organoactinide-catalyzed
intermolecular hydroamination of terminal alkynes. Organometallics
1996, 15, 3773−3775.
(3) Straub, T.; Haskel, A.; Neyroud, T. G.; Kapon, M.; Botoshansky,
M.; Eisen, M. S. Intermolecular hydroamination of terminal alkynes
catalyzed by organoactinide complexes. scope and mechanistic studies.
Organometallics 2001, 20, 5017−5035.
(4) Hayes, C. E.; Platel, R. H.; Schafer, L. L.; Leznoff, D. B. Diamido-
ether actinide complexes as catalysts for the intramolecular hydro-
amination of aminoalkenes. Organometallics 2012, 31, 6732−6740.
(5) Wang, J.; Zheng, C.; Maguire, J. A.; Hosmane, N. S. A new class of
constrained-geometry metallocenes: Synthesis and crystal structure of a
carboranyl-thiol-appended half-sandwich titanocene and its conversion
to halotitanocene. Organometallics 2003, 22, 4839−4841.
(6) Weiss, C. J.; Wobser, S. D.; Marks, T. J. Organoactinide-mediated
hydrothiolation of terminal alkynes with aliphatic, aromatic, and
benzylic thiols. J. Am. Chem. Soc. 2009, 131 (6), 2062−2063.
(7) Weiss, C. J.; Wobser, S. D.; Marks, T. J. Organometallics 2010, 29,
6308−6320.
(8) Weiss, C. J.; Marks, T. J. Organo-f-element catalysts for efficient
and highly selective hydroalkoxylation and hydrothiolation. Dalton
Trans. 2010, 39, 6576−6588.
(9) Fox, A. R.; Bart, S. C.; Meyer, K.; Cummins, C. C. Towards
uranium catalysts. Nature 2008, 455, 341−349.
(10) Arnold, P. L. Uranium-mediated activation of small molecules.
Chem. Commun. 2011, 47, 9005−9010.
(11) Gardner, B. M.; Stewart, J. C.; Davis, A. L.; McMaster, J.; Lewis,
W.; Blake, A. J.; Liddle, S. T. Homologation and functionalization of
carbon monoxide by a recyclable uranium. Proc. Natl. Acad. Sci. U. S. A.
2012, 109, 9265−9270.
(12) Evans, W. J.; Mueller, T. J.; Ziller, J. W. Reactivity of
( C 5 M e 5 ) 3 L a L x c o m p l e x e s : s y n t h e s i s o f
a t r i s -
(pentamethylcyclopentadienyl) complex with two additional ligands,
(C5Me5)3La(NCCMe3)2. J. Am. Chem. Soc. 2009, 131, 2678−2686.
(13) Lin, Z.; Marks, T. J. Metal, bond energy, and ancillary ligand
effects on actinide-carbon.sigma.-bond hydrogenolysis. A kinetic and
mechanistic study. J. Am. Chem. Soc. 1987, 109, 7979−7985.
(14) Haynes, W. M. CRC Handbook of Chemistry and Physics, 96th ed.;
CRC Press: Boca Raton, FL, 2015−2016; pp 9−69.
(15) LeBlanc, F. A.; Piers, W. E.; Parvez, M. Selective hydrosilation of
CO2 to a bis(silylacetal) using an anilido bipyridyl-ligated organo-
scandium catalyst. Angew. Chem., Int. Ed. 2014, 53, 789−792.
(16) Yu, X.; Seo, S.; Marks, T. J. Effective, selective hydroalkoxylation/
cyclization of alkynyl and allenyl alcohols mediated by lanthanide
catalysts. J. Am. Chem. Soc. 2007, 129, 7244−7245.
(17) Andrea, T.; Barnea, E.; Eisen, M. S. Organoactinides promote the
tishchenko reaction: The myth of inactive actinide-alkoxo complexes. J.
Am. Chem. Soc. 2008, 130, 2454−2455.
(18) Sharma, M.; Andrea, T.; Brookes, N. J.; Yates, B. F.; Eisen, M. S.
Organoactinides promote the dimerization of aldehydes: scope, kinetics,
thermodynamics, and Ccalculation studies. J. Am. Chem. Soc. 2011, 133,
1341−1356.
(19) Karmel, I. S. R.; Fridman, N.; Tamm, M.; Eisen, M. S.
Mono(imidazolin-2-iminato) actinide complexes: synthesis and appli-
cation in the catalytic dimerization of aldehydes. J. Am. Chem. Soc. 2014,
136, 17180−17192.
(20) Karmel, I. S. R.; Fridman, N.; Tamm, M.; Eisen, M. S. Mixed
imidazolin-2-iminato−Cp* thorium(IV) complexes: synthesis and
reactivity toward oxygen-containing substrates. Organometallics 2015,
34, 2933−2942.
(21) Wobser, S. D.; Marks, T. J. Organothorium-catalyzed hydro-
alkoxylation/cyclization of alkynyl alcohols. scope, mechanism, and
ancillary ligand effects. Organometallics 2013, 32, 2517−2528.
(38) Barker, J.; Kilner, M. The coordination chemistry of the amidine
ligand. Coord. Chem. Rev. 1994, 133, 219−300.
(39) Zhang, W.-X.; Nishiura, M.; Hou, Z. Catalytic addition of terminal
alkynes to carbodiimides by half-sandwich rare earth metal complexes. J.
Am. Chem. Soc. 2005, 127, 16788−16789.
(40) Karmel, I. S. R.; Tamm, M.; Eisen, M. S. Actinide-mediated
catalytic addition of E-H bonds (E = N, P, S) to carbodiimides,
isocyanates, and isothiocyanates. Angew. Chem., Int. Ed. 2015, 54,
12422−12425.
(41) For a copper complex, see: Dabritz, E. Snytheses and reactions of
̈
O, N, N′-trisubstituted isoureas. Angew. Chem., Int. Ed. Engl. 1966, 5,
470−477.
(42) Batrice, R. J.; Kefalidis, C. E.; Maron, L.; Eisen, M. S. Actinide-
catalyzed intermolecular addition of alcohols to carbodiimides. J. Am.
Chem. Soc. 2016, 138, 2114−2117.
(43) Wu, X.; Tamm, M. Transition metal complexes supported by
highly basic imidazolin-2-iminato and imidazolin-2-imine N-donor
ligands. Coord. Chem. Rev. 2014, 260, 116−138.
D
Inorg. Chem. XXXX, XXX, XXX−XXX