there is almost no activity loss (0.8% loss for the activity).
there is almost no limitation of mass transfer for the catalytic
reactions. This feature may be potentially important for indus-
However, by the same number of recycles, OMC-SO H has
3
a relatively high activity loss (9.7%, Table 1, run 6). The acid–
trial applications of G-SO H as an efficient catalyst in the future.
3
3
base titration shows that recycling of the OMC-SO H catalyst
leads to a partial loss of acidic sites (19.1% loss of total), while
À1
Acknowledgements
there is a relatively low loss of acidic sites (1.13 mmol g , 5.8%
loss) for G-SO
sulfonic groups on G-SO
to the difference in the thermal stability of the sulfonic groups, as
shown in Fig. 7. The stable sulfonic groups on G-SO H could be
3
H by the same treatment. The more stable
This work is supported by the State Basic Research Project of
China (2009CB623507) and the National Natural Science
Foundation of China (20973079 and U1162201).
3
H than OMC-SO H are closely related
3
3
greatly important for practical applications of G-SO H as an
3
efficient heterogeneous acidic catalyst in the future.
Notes and references
Moreover, the comparison of catalytic data over various
catalysts is extended to EAB, PRE, and HPO. These reactions
1
2
3
A. Corma, Chem. Rev., 1995, 95, 559.
A. Corma, Chem. Rev., 1997, 97, 2373.
M. E. Davis, Nature, 2002, 417, 813.
have similar catalytic trends to EAC. i. e. G-SO
higher activities than OMC-SO H, Amberlyst 15, SBA-15-
SO H, GO and RGO samples. For example, in EAB (Table 1,
run 1, 4, 7–10), G-SO H shows an activity of 89.1%, while OMC-
SO H, Amberlyst 15, SBA-15-Pr-SO H, GO and RGO have
conversions of 75.1, 83.8, 69.2, 21.9 and 18.2%, respectively; in
PRE (Table 1, run 1, 4, 7–10), G-SO H shows an activity of
2.1%, while OMC-SO H, Amberlyst 15, SBA-15-SO H, GO
3
H exhibits much
4 F. J. Liu, X. J. Meng, Y. L. Zhang, L. M. Ren, F. Nawaz and
F.-S. Xiao, J. Catal., 2010, 271, 52.
3
3
5
6
C. W. Jones, K. Tsuji and M. E. Davis, Nature, 1998, 393, 52.
D. Margolese, J. A. Melero, S. C. Christiansen, B. F. Chmelka and
G. D. Stucky, Chem. Mater., 2000, 12, 2448.
3
3
3
7 J. A. Melero, R. Van Grieken and G. Morales, Chem. Rev., 2006, 106,
790.
3
3
8
D. E. De Vos, M. Dams, B. F. Sels and P. A. Jacobs, Chem. Rev.,
2002, 102, 3615.
8
3
3
and RGO have conversions of 66.1, 75.2, 61.5, 12.3 and 11.1%,
9 P. Barbaro and F. Liguori, Chem. Rev., 2009, 109, 515.
0 M. Hara, T. Yoshida, A. Takagaki, T. Takata, J. N. Kondo,
S. Hayashi and K. Domen, Angew. Chem., Int. Ed., 2004, 43, 2955.
1 M. Toda, A. Takagaki, M. Okamura, J. N. Kondo, S. Hayashi,
K. Domen and M. Hara, Nature, 2005, 438, 178.
1
1
respectively; in HPO (Table 1, run 1, 4, 7, 8), G-SO H shows an
3
activity of 66.8%, while OMC-SO H, Amberlyst 15, and SBA-
3
1
5-Pr-SO
3
H have conversions of 42.3, 50.3, and 30.9%, respec-
H has very
tively. In addition, it is also worth noting that G-SO
3
12 T. A. Peters, N. E. Benes, A. Holmen and J. T. F. Keurentjes, Appl.
Catal., A, 2006, 297, 182.
good mass transfer in the reactions because the catalytic activities
of the stirring conditions and static conditions are almost the
same (Table 1, run 2 & 3), while there are obvious differences in
1
3 J. J. Chiu, D. J. Pine, S. T. Bishop and B. F. Chmelka, J. Catal., 2004,
21, 400.
14 J. Perez-Ramirez, C. H. Christensen, K. Egeblad, C. H. Christensen
2
and J. C. Groen, Chem. Soc. Rev., 2008, 37, 2530.
3
the catalytic activities over OMC-SO H between the stirring and
1
1
1
5 J. Karger and D. Freude, Chem. Eng. Technol., 2002, 25, 769.
6 B. J. Schoeman, J. Sterte and J. E. Otterstedt, Zeolites, 1994, 14, 110.
7 L. Tosheva and V. P. Valtchev, Chem. Mater., 2005, 17, 2494–2513.
static conditions (Table 1, run 4 & 5), confirming that mass
transfer influences catalytic activities in these reactions. For
example, G-SO H exhibits a conversion of 89.3, 81.7, and 66.4%
3
18 B. F. G. Johnson, Top. Catal., 2003, 24, 147.
1
9 C. J. H. Jacobsen, C. Madsen, J. Houzvicka, I. Schmidt and
A. Carlsson, J. Am. Chem. Soc., 2000, 122, 7116.
0 Y. S. Tao, H. Kanoh, L. Abrams and K. Kaneko, Chem. Rev., 2006,
106, 896.
under static conditions in EAB, PRE, and HPO, which are very
close to the activities (89.1, 82.1, and 66.8%) under stirring
2
3
conditions. On the contrary, OMC-SO H shows that the activi-
ties (61.5, 58.3, and 34.6%) under static conditions are much
lower than those (75.1, 66.1, and 42.3%) under stirring condi-
21 M. Choi, H. S. Cho, R. Srivastava, C. Venkatesan, D.-H. Choi and
R. Ryoo, Nat. Mater., 2006, 5, 718.
2
2
2 W. Fan, M. A. Snyder, S. Kumar, P. S. Lee, W. C. Yoo,
A. V. McCormick, R. L. Penn, A. Stein and M. Tsapatsis, Nat.
Mater., 2008, 7, 984.
3 F.-S. Xiao, L. F. Wang, C. Y. Yin, K. F. Lin, Y. Di, J. Li, R. Xu,
D. S. Su, R. Schlogl, T. Yokoi and T. Tatsumi, Angew. Chem., Int.
Ed., 2006, 45, 3090.
tions. These results confirm that OMC-SO
mass transfer in these reactions. Furthermore, it is also observed
that G-SO H has good recyclability in these reactions. For
example, after being recycled 5 times, G-SO H shows conver-
3
H has a limitation on
3
3
sions of 87.2, 80.8, and 64.9% in EAB, PRE, and HPO (Table 1,
run 3). The activity loss in these reactions is only 1.5–2.8%. On
2
2
4 M. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki and R. Ryoo,
Nature, 2009, 461, 246.
5 K. Na, C. Jo, J. Kim, K. Cho, J. Jung, Y. Seo, R. J. Messinger,
B. F. Chmelka and R. Ryoo, Science, 2011, 333, 328.
6 A. K. Geim, Science, 2009, 324, 1530–1534.
the contrary, OMC-SO H has a significant reduction in the
3
activities (6.9–9.8% loss, Table 1, run 6) after 5 recycles.
2
2
7 K. S. Noveselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang,
S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 2004,
Conclusions
3
06, 666.
2
8 K. S. Noveselov, A. K. Geim, S. V. Morozov, D. Jiang,
M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and
A. A. Firsov, Nature, 2005, 438, 197.
3
Sulfated graphene (G-SO H) is successfully synthesized from the
hydrothermal sulfonation of reduced graphene oxide with
ꢀ
29 S. Gilje, H. Song, M. Wang, K. L. Wang and R. B. Kaner, Nano Lett.,
007, 7, 3394.
fuming sulfuric acid at 180 C. Catalytic tests in acid-catalyzed
2
0 H. B. Heersche, P. Jarillo-Herrero, J. B. Oostinga,
liquid reactions including the esterification of acetic acid with
cyclohexanol, the esterification of acetic acid with 1-butanol, the
Peckmann reaction of resorcinol with ethyl acetoacetate, and the
3
L. M. K. Vandersypen and A. F. Morpurgo, Nature, 2007, 446, 56.
31 D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Z. Song,
Y. G. Y. Huang, C. Liu and J. A. Rogers, Science, 2008, 320, 507.
2 F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake,
3
hydration of propylene oxide show that G-SO H is a highly
3
active, very stable, and excellently recyclable catalyst, which is
strongly attributed to its unique graphene structure the fact that
M. I. Katsnelson and K. S. Novoselov, Nat. Mater., 2007, 6, 652.
33 M. Zhou, Y. M. Zhai and S. J. Dong, Anal. Chem., 2009, 81, 5603.
J. Mater. Chem., 2012, 22, 5495–5502 | 5501
This journal is ª The Royal Society of Chemistry 2012