C O M M U N I C A T I O N S
Table 1. Summary of EXAFS30 and XRPD Results; Esd’s in
Navarro, J. A. R. Chem. Mater. 2010, 22, 1664–1672, and references
Parentheses
therein.
(
5) Czaja, A. U.; Trukhan, N.; M u¨ ller, U. Chem. Soc. ReV. 2009, 38, 1284–
Parameter
EXAFS (4)
XRPD (3)
XRPD (4)
1293.
(
6) Long, J. R.; Yaghi, O. M. Chem. Soc. ReV. 2009, 38, 1213–1214.
R-factor
0.011
a
a
(7) Tranchemontagne, D. J.; Mendoza-Cort e´ s, J. L.; O’Keeffe, M.; Yaghi, O. M.
Chem. Soc. ReV. 2009, 38, 1257–1283.
∆
0
E
0, eV
-4.1(5)
0.92(4)
2.04(1)
0.0087(5)
2.77(2)
0.010(2)
2.96(1)
0.011(1)
4.12(3)
0.010(3)
-0.03(3)
0.007(1)
-
-
2
(8) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.;
Yaghi, O. M. Science 2002, 295, 469–472.
S
-
-
〈
R
O1,N1〉, Å
2.09-2.15
-
2.89
-
2.92
-
4.13
-
-
-
2.01-2.08
-
2.88
-
2.83
-
4.08
-
-
-
(
9) Eddaoudi, M.; Moler, D.; Li, H.; Reineke, T. M.; O’Keeffe, M.; Yaghi,
2
2
σ (O1,N1), Å
O. M. Acc. Chem. Res. 2001, 34, 319–330, and references therein.
R
N2, Å
(10) F e´ rey, G.; Serre, C. Chem. Soc. ReV. 2009, 38, 1380–1399, and references
2
2
σ (N2), Å
R
σ (Ni1), Å
R
therein.
(
11) Choi, H. J.; Dinca, M.; Long, J. R. J. Am. Chem. Soc. 2008, 130, 7848–
Ni1, Å
2
2
7850.
(
(
12) Masciocchi, N.; Galli, S.; Sironi, A. Comm. Inorg. Chem. 2005, 26, 1–37.
13) Masciocchi, N.; Corradi, E.; Moret, M.; Ardizzoia, G. A.; Maspero, A.;
La Monica, G.; Sironi, A. Inorg. Chem. 1997, 36, 5648–5650.
14) Masciocchi, N.; Moret, M.; Cairati, P.; Sironi, A.; Ardizzoia, G. A.; La
Monica, G. J. Am. Chem. Soc. 1994, 116, 7668–7676.
Ni2, Å
2
2
σ (Ni2), Å
(
(
R(all other paths)
2
2
σ (all other paths), Å
15) Ardizzoia, G. A.; La Monica, G.; Masciocchi, N.; Maspero, A.; Sironi, A.
Angew. Chem., Int. Ed. 1998, 37, 3366–3369.
a
(16) Galli, S.; Masciocchi, N.; Tagliabue, G.; Sironi, A.; Navarro, J. A. R.; Salas,
J. M.; Mendez-Li n˜ an, L.; Domingo, M.; Perez-Mendoza, M.; Barea, E.
Chem.sEur. J. 2008, 14, 9890–9901, and references therein.
(
17) Maspero, A.; Galli, S.; Masciocchi, N.; Palmisano, G. Chem. Lett. 2008,
3
7, 956–957.
(
(
(
18) He, X.; An, B.-L.; Li, M.-X. Acta Crystallogr. 2008, E64–o40.
19) Vilsmeier, A.; Haack, A. Ber. 1927, 60, 119.
14 4 1
20) Crystal data for 1: C18H N /c, a
, fw ) 286.34 g mol-1, monoclinic, P2
)
16.042(2) Å, b ) 5.5181(6) Å, c ) 7.8621(7) Å, ꢀ ) 93.96(1)°, V )
3 -3 -1
6
94.3(1) Å , Z ) 2, F ) 1.370 g cm , µ(Cu KR) ) 67.1 mm , R
and RBragg ) 0.035, 0.048, 0.015, respectively, for 3501 data collected in
the 5.0°-75.0° 2Θ range. Crystal data for 2: C16 , fw 348.28 g
/c, a ) 5.2503(4) Å, b ) 5.3608(3) Å, c ) 24.376(2)
p
, Rwp,
8 6 4
H N O
-1
mol , monoclinic, P2
Å, ꢀ ) 90.480(4)°, V ) 686.0(1) Å , Z ) 2, F ) 1.686 g cm , µ(Cu KR)
1
3
-3
1
)
108.3 mm- , R
001 data collected in the 5.0°-105.0° 2Θ range.
21) If, instead, NiCl · 6H O is reacted with H tet, a different species,
NiCl (H tet)] (5), is formed, structurally characterized by XRPD analysis
as containing 2D layers built upon pseudooctahedral trans-NiCl
chromophores linked in infinite NiCl ribbons. Crystal data for 5:
p
, Rwp, and RBragg ) 0.075, 0.104, 0.058, respectively, for
5
(
(
2
2
2
[
2
2
4
N
2
Figure 4. Thermodiffractogram of species 4, highlighting the substantial
constancy of its XRPD pattern, when heated, in air, from rt (blue trace) to
2
-1
j
2 6 4
N NiO , fw ) 477.88 g mol , triclinic, P1, a ) 6.315(1) Å, b )
C
16
H
8
Cl
3
.620(1) Å, c ) 18.443(3) Å, R ) 94.85(3)°, ꢀ ) 109.93(1)°, γ ) 89.25(3)°,
4
10 °C. The upper insert shows the relative changes of peak intensities
3
-3
-1
V ) 394.5(2) Å , Z ) 1, F ) 2.012 g cm , µ(Cu KR) ) 531.9 mm , R
p
,
due to extraframework water elimination.
R
wp, and RBragg ) 0.025, 0.036, 0.023, respectively, for 3525 data collected
in the 4.5°-75.0° 2Θ range. Differently, the reaction of H
2
pbp with
In summary, state-of-the-art structural powder diffraction tech-
2 2
NiCl · 6H O affords 4, i.e., the same product obtained with nickel acetate.
22) Crystal data for 3, [Ni
8
(OH)
4
(OH
2
)
2
(µ
4 6 80 8 6
-pbp) ], C108H N24Ni O , fw )
3
niques (which have recently increased the basket of structural tools
-1
j
2
279.53 g mol , cubic, Fm3m, a ) 31.358(3) Å, V ) 30836(9) Å , Z )
2
9
-3
-1
in the structural chemist’s hands, well beyond the traditional
methods of qualitative and quantitative analyses) were coupled with
X-ray absorption techniques and spectroscopic measurements,
allowing the detection and confirmation of relevant stereochemical
features and, above all, the determination of the correct, but elusiVe,
4, F ) 0.49 g cm , µ(Cu KR) ) 69.8 mm , R
.012, 0.008, for 3626 data collected in the 7.5°-80.0° 2Θ range. Crystal
data for 4: [Ni (OH) (OH (µ -tet) ]·6H 36, fw ) 2759.27
p
, Rwp, and RBragg ) 0.007,
0
8
4
j
)
2 2
4
6
2 56 8
O, C96H N36Ni O
-1
3
g mol , cubic, Fm3m, a ) 30.5845(2) Å, V ) 28610(6) Å , Z ) 4, F )
-3
-1
0
p
.64 g cm , µ(Cu KR) ) 89.4 mm , R , Rwp, and RBragg ) 0.030, 0.054,
0
.054, for 4876 data collected in the 7.5°-105.0° 2Θ range.
(23) Xu, J.-Y.; Qiao, X.; Song, H.-B.; Yan, S. P.; Liao, D.-Z.; Gao, S.; Journaux,
Y.; Cano, J. Chem. Commun. 2008, 6414–6416.
stoichiometry of these [Ni
8
(OH)
4
(OH
2
)
2
(µ
4
-L)
6
2
] · nH O porous
(
24) The presence of (disordered) solvent is witnessed by the fact that framework
atoms alone did not model the whole X-ray scattered intensity. The less-
than-ideal quality of the XRPD traces hampered solvent modeling.
coordination polymers.
Acknowledgment. Fondazione CARIPLO (Project No. 2007-
(25) Ovcharenko, V.; Fursova, E.; Romanenko, G.; Eremenko, I.; Tretyakov,
E.; Ikorskii, V. Inorg. Chem. 2006, 45, 5338–5350.
5
117) is heartily acknowledged for funding. Mr. Iacopo Galli, for
(
26) Miller, S. R.; Pearce, G. M.; Wright, P. A.; Bonino, F.; Chavan, S.; Bordiga,
S.; Margiolaki, I.; Guillou, N.; F e´ rey, G.; Bourrelly, S.; Llewellyn, P. L.
J. Am. Chem. Soc. 2008, 130, 15967–15981.
helping in the syntheses, and Dr. Damiano Monticelli, for helping
in ICP-MS analyses, are also acknowledged. XANES and EXAFS
(
27) (a) Bonino, F.; Chavan, S.; Vitillo, J. G.; Groppo, E.; Agostini, G.; Lamberti,
C.; Dietzel, P. D. C.; Prestipino, C.; Bordiga, S. Chem. Mater. 2008, 20,
3
0
spectra were collected at BM26A at ESRF.
4957–4968. (b) Chavan, S.; Vitillo, J. G.; Groppo, E.; Bonino, F.; Lamberti,
C.; Dietzel, P. D. C.; Bordiga, S. J. Phys. Chem. C 2009, 113, 3292–3299.
c) Chavan, S.; Bonino, F.; Vitillo, J. G.; Groppo, E.; Lamberti, C.; Dietzel,
P. D. C.; Zecchina, A.; Bordiga, S. Phys. Chem. Chem. Phys. 2009, 11,
811–9822.
Supporting Information Available: Details on the synthesis,
spectroscopy, crystallographic analysis (CIF files and Rietveld refine-
ment plots) of species 1-5; TG and DSC plots for species 1-4. Details
on the XANES and EXAFS data acquisition and analysis. EXAFS fit
in R-space. Details on the IR and DRS-UV-vis analyses; IR spectra
(
9
(
28) Hafizovic, J.; Bjorgen, M.; Olsbye, U.; Dietzel, P. D. C.; Bordiga, S.;
Prestipino, C.; Lamberti, C.; Lillerud, K. P. J. Am. Chem. Soc. 2007, 129,
3612–3620.
-
1
(29) David, W. I. F., Shankland, K., McCusker, L. B.; B a¨ rlocher, Ch., Eds.;
down to 50 cm . This material is available free of charge via the
Internet at http://pubs.acs.org.
Structure determination from powder diffraction data; Oxford University
Press: 2006, Oxford, U.K.
3
(
30) The fit was performed in R-space in the 1.0-4.5 Å range over k -weighted
-1
FT of the ꢁ(k) functions performed in the 2.0-16.0 Å interval. A single
2
References
0 0
∆E and a single S have been optimized for all SS and MS paths. The
Ni-O and Ni-Ni (first and second neighbor) SS paths have been modeled
2
(
(
(
1) Batten, S.; Neville, S. N.; Rurner, D.R. Coordination Polymers: Design,
Analysis and Application; RSC Publishing: 2009, Cambridge, U.K.
2) Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga,
S.; Lillerud, K. P. J. Am. Chem. Soc. 2008, 130, 13850–13851.
3) Britt, D.; Tranchemontagne, D. J.; Yaghi, O. M. Proc. Natl. Acad. Sci.
U.S.A. 2008, 105, 11623–11627, and references therein.
with their own path length and Debye-Waller factors, while a unique σ
and a unique path length parameter R, common to all other SS and MS
paths, have been optimized.
(31) Nikitenko, S.; Beale, A. M.; van der Eerden, A. M. J.; Jacques, S. D. M.;
Leynaud, O.; O’Brien, M. G.; Detollenaere, D.; Kaptein, R.; Weckhuysen,
B. M.; Bras, W. J. Synchrotron Radiat. 2008, 15, 632–640.
(4) Galli, S.; Masciocchi, N.; Colombo, V.; Maspero, A.; Palmisano, G.; Lopez-
Garzon, F. J.; Domingo-Garc ´ı a, M.; Fernandez-Morales, I.; Barea, E.;
JA102862J
7
904 J. AM. CHEM. SOC. 9 VOL. 132, NO. 23, 2010