10.1002/adsc.201901398
Advanced Synthesis & Catalysis
Scheme 5. Plausible reaction mechanism of 1a with (Rp,R’p)-(S)-Mandyphos ligand.
Research) to M.M. We thank Dr. Yuji Nishii (Osaka University)
for his assistance with X-ray analysis.
between 6 and 6’ is almost negligible under the
enantioselective conditions but somewhat competitive
under nonenantioselective conditions using the XPhos
ligand (Scheme 4).
References
In conclusion, we have developed a palladium-
catalyzed intramolecular Mizoroki-Heck-type reaction
of diarylmethyl carbonates to form the corresponding
methyleneindanes in good yields under external base-
free, neutral conditions. Additionally, the asymmetric
synthesis is possible through the kinetic resolution
with the chiral Mandyphos ligand. To the best of our
knowledge, this is the first successful example of
[1] a) The Mizoroki-Heck Reaction; M. Oestreich, Ed.;
Wiley: Chichester, 2009.; Reviews: b) A. B. Dounary, L.
E. Overman, Chem. Rev. 2003, 103, 2945; c) C. Torborg,
M. Beller, Adv. Synth. Catal. 2009, 351, 3027; d) D. M.
Cartney P. J. Guiry, Chem. Soc. Rev. 2011, 40, 5122; e)
J. L. Bras, J. Muzart, Chem. Rev. 2011, 111, 1170; f) S.
Jagtap, Catalysts 2017, 7, 267.
catalytic
enantioselective
Mizoroki-Heck-type
reaction of secondary benzylic electrophiles. Further
improvement of enantioselectivity and development of
related asymmetric benzylic substitution reactions are
currently underway.
[2] a) W. Affo, H. Ohmiya, T. Fujioka, Y. Ikeda, T.
Nakamura, H. Yorimitsu, K. Oshima, Y. Imamura, T.
Mizuta, K. Miyoshi, J. Am. Chem. Soc. 2006, 128, 8068;
b) L. Firmansjah, G. C. Fu, J. Am. Chem. Soc. 2007, 129,
11340; c) R. Matsubara, A. C. Gutierrez, T. F. Jamison,
J. Am. Chem. Soc. 2011, 133, 19020; d) M. E. Weiss, L.
M. Kreis, A. Lauber, E. M. Carreira, Angew. Chem. Int.
Ed. 2011, 50, 11125; Angew. Chem. 2011, 123, 11321;
d) A. R. Ehle, Q. Zhou, M. P. Watson, Org. Lett. 2012,
14, 1202; e) Z. Yang, J. Zhou, J. Am. Chem. Soc. 2012,
134, 11833; f) T. Nishikata, Y. Noda, R. Fujimoto, T.
Sakashita, J. Am. Chem. Soc. 2013, 135, 16372; g) A. R.
O. Venning, M. R. Kwiatkowski, J. E. R. Peña, B. C.
Lainhart, A. A. Guruparan, E. J. Alexanian, J. Am. Chem.
Soc. 2017, 139, 11595; h) M. R. Kwiatkowski, E. J.
Alexanian, Angew. Chem. Int. Ed. 2018, 57, 16857;
Angew. Chem. 2018, 130, 17099.
Experimental Section
CpPd(3-C3H5) (2.1 mg, 0.010 mmol) and (Rp,R’p)-(S)-
Mandyphos (8.2 mg, 0.010 mmol) were placed in a 4 mL
screw cap vial in a glovebox filled with nitrogen. 1,4-
Dioxane (0.5 mL) was added to the vial, and suspension was
stirred for 10 min. The mixture was transferred to an another
4 mL screw cap vial containing (2-allylphenyl)(naphthalen-
2-yl)methyl tert-butyl carbonate (1a; 74.9 mg, 0.20 mmol)
with additional 1,4-dioxane (1.0 mL). The vial was sealed
with a cap and taken out of the glovebox. The suspension
was stirred for 16 h at 60 °C. The resulting mixture was
filtered through a short pad of activated alumina and sodium
sulfate. Concentration in vacuo and subsequent purification
by column chromatography on neutral silica gel with
hexane/ethyl acetate (40/1 to 20/1 v/v) as an eluent gave (S)-
2-(2-methylene-2,3-dihydro-1H-inden-1-yl)naphthalene
[(S)-2a; 22 mg, 8.4 × 10-2 mmol, 93:7 e.r.)] in 42% yield:
enantiomeric ratio was determined by HPLC analysis in
comparison with authentic racemic sample (CHIRALPAK
AD-H column, n-hexane/isopropyl alcohol = 99.7/0.3, 0.5
mL/min, major isomer: tR = 11.8 min, minor isomer: tR =
12.7 min, UV detection at 275.0 nm, 30 oC). The unreacted
[3] a) T.-S. Mei, H. H. Patel, M. S. Sigman, Nature 2014,
508, 340; b) H. H. Patel, M. S. Sigman, J. Am. Chem.
Soc. 2015, 137, 3462; c) H. H. Patel, M. S. Sigman, J.
Am. Chem. Soc. 2016, 138, 14226.
[4] M. R. Harris, M. O. Konev, E. R. Jarvo, J. Am. Chem.
Soc. 2014, 136, 7825.
(S)-(2-allylphenyl)(naphthalen-2-yl)methyl
tert-butyl
[5] a) S. Tabuchi, K. Hirano, T. Satoh, M. Miura, J. Org.
Chem. 2014, 79, 5401; b) S. Tabuchi, K. Hirano, M.
Miura, Chem. Eur. J. 2015, 21, 16823; c) S. Tabuchi, K.
Hirano, M. Miura, Angew. Chem. Int. Ed. 2016, 55,
6973; Angew. Chem. 2016, 128, 7087; d) A. Najib, K.
Hirano, M. Miura, Org. Lett. 2017, 19, 2438; e) A. Najib,
K. Hirano, M. Miura, Chem. Eur. J. 2018, 24, 6525; f)
A. Matsude, K. Hirano, M. Miura, Org. Lett. 2018, 20,
3553.
carbonate [(S)-1a; 32 mg, 8.6 × 10-2 mmol, 94:6 e.r.] was
also recovered in 43% yield: the enantiomeric ratio was
determined by HPLC analysis in comparison with authentic
racemic sample (CHIRALCEL OJ-H column, n-
hexane/isopropyl alcohol = 97/3, 0.5 mL/min, major isomer:
tR = 13.6 min, minor isomer: tR = 10.1 min, UV detection at
256.0 nm).
Acknowledgements
This work was supported by JSPS KAKENHI Grant Nos.
18K19078 (Grant-in-Aid for Challenging Research (Exploratory))
to K.H. and JP 17H06092 (Grant-in-Aid for Specially Promoted
[6]For contributions from other research groups in this field,
see: a) J.-Y. Legros, A. Boutros, J.-C. Fiaud, M. Toffano,
J. Mol. Catal. A: Chem. 2003, 196, 21; b) R. Kuwano,
4
This article is protected by copyright. All rights reserved.