encapsulation,7 and recently in biomedical applications.8
Traditionally, dendritic compounds are prepared using two
different synthesis concepts, i.e., divergent9 or convergent10
methods, and more recently, mixed methods, e.g., for self-
assembling dendrimers, have emerged.11
Scheme 1. Synthesis of First-Generation Dendrimersa
The modular or mixed synthetic strategy enables combina-
tion of two totally different functionalities into one dendrimer
molecule, e.g., highly polar and highly nonpolar regions are
distributed onto the surface of the dendrimer. The preparation
of low-molecular weight bisfunctionalized “bow-tie”8a or
Janus12 [a Roman god of gates and doors, represented with
a double-faced head] dendrimers utilizes this approach and
opens the door to tailoring of the overall properties of the
dendrimers. The extreme functional differences, the two faces
of Janus, at the outer perimeter of a molecule are especially
needed when self-assembling systems are to be designed and
prepared, as very elegantly demonstrated by Percec et al.13
The synthetic strategy here combines a protection-depro-
tection sequence coupled with alternating divergent-
convergent-divergent methods for formation of the den-
drimer generations. Particular interest was focused on the
use of gallate ether-type monodendrons due to their known
self-assembling properties.13 Coupling these nonpolar mono-
dendrons with a polar aliphatic arborol part creates a family
of bisfunctionalized multiester molecules with possible self-
assembling or, when suitably modified, liquid crystalline
properties.
a Reagents and conditions: (a) DCC, DPTS, CH2Cl2, rt, 20 h;
(b) H2, Pd/C, THF-EtOAc, 6 h; (c) THF-HCl (6 M), rt, 3 h.
The route to the first-generation bisfunctionalized multi-
ester dendritic molecule is shown in Scheme 1.
The core molecule monobenzal-pentaerythritol 1 was
prepared by the method of Issidorides and Gulen14 from
pentaerythritol in 76% yield.
(7) (a) Dykes, G. M.; Smith, D. K.; Seeley, G. J. Angew. Chem., Int.
Ed. 2002, 41, 3254-3257. (b) Hecht, S.; Fre´chet, J. M. J. Angew. Chem.,
Int. Ed. 2001, 40, 74-91. (c) Gorman, C. B.; Smith, J. C. Acc. Chem. Res.
2001, 34, 60-71. (d) Hawker, C. J.; Wooley, K. L.; Fre´chet, J. M. J. J.
Am. Chem. Soc. 1993, 115, 4375-4376.
(8) (a) Gillies, E. R.; Fre´chet, J. M. J. J. Am. Chem. Soc. 2002, 124,
14137-14146. (b) Patri, A. K.; Majoros, I. J.; Baker, J. R. Curr. Opin.
Chem. Biol. 2002, 6, 466-471. (c) Lee, J. H.; Lim, Y.-B.; Choi, J. S.; Lee,
Y.; Kim, T.-I.; Kim, H. J.; Yoon, J. K.; Kim, K.; Park, J.-S. Bioconjugate
Chem. 2003, 14, 1214-1221. (d) Padilla De Jesus, O. L.; Ihre, H. R.; Gagne,
L.; Fre´chet, J. M. J.; Szoka, F. C., Jr. Bioconjugate Chem. 2002, 13, 453-
461. (e) Ihre, H. R.; Padilla De Jesus, O. L.; Szoka, F. C., Jr.; Frechet, J.
M. J. Bioconjugate Chem. 2002, 13, 443-452. (f) D’Emanuele, A.;
Jevprasesphant, R.; Penny, J.; Attwood, D. J. Controlled Release 2004,
95, 447-453.
(9) (a) Buhleir, W.; Wehner, F. V.; Vo¨gtle, F. Synthesis 1987, 155-
158. (b) Tomalia, D. A.; Baker, H.; Dewald, J. R.; Hall, M.; Kallos, G.;
Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Macromolecules 1986, 19, 2466-
2468. (c) Newkome, G. R.; Yao, Z.; Baker, H.; Gupta, V. K. J. Org. Chem.
1985, 50, 2003-2004.
(10) (a) Hawker, C. J.; Fre´chet, J. M. J. J. Am. Chem. Soc. 1990, 112,
7638-7647. (b) Hawker, C. J.; Fre´chet, J. M. J. J. Chem. Soc., Chem.
Commun. 1990, 1010.
The protected first-generation dendritic molecule 3 was
esterified in dichloromethane by N,N-dicyclohexyl carbodi-
imide (DCC) coupling using 4-(dimethylamino)pyridinium
p-toluenesulfonate (DPTS)15 as a catalyst. After purification
by column chromatography on silica, compound 3 was
obtained in 97% yield. The benzylidene acetal protective
group was removed by catalytic hydrogenolysis in quantita-
tive yield to provide partially unprotected molecule 4. The
first-generation monodendron acids 5-7 were prepared from
the corresponding hydroxybenzoic acid methyl esters with
1-bromododecane in DMF at 60 °C using K2CO3 as a base.
Hydrolysis of the ester group with KOH in refluxing ethanol
gave 5-7 in 95, 98, 95% yields, respectively.16 The gallate
ether monodendrons were then coupled with partly unpro-
tected 4 in the presence of DCC and DPTS. The resulting
acetonide-protected compounds 8-10 were easily separated
from molecule 4 by column chromatography in 57, 86, and
81% yields, respectively. Removal of the acetonide groups
in THF-HCl (6 M) mixture resulted in white solids, which,
after separation by filtration and drying in vacuo, gave the
fully unprotected first-generation compounds, 11-13 in 71,
83, and 92% yields, respectively.
(11) (a) Dykes, G. M.; Smith, D. K. Tetrahedron 2003, 59, 3999-4009.
(b) Zeng, F.; Zimmerman, S. C.; Kolotuchin, S. V.; Reichert, D. E. C.;
Ma, Y. Tetrahedron 2002, 58, 825-843.
(12) (a) Saez, I.; Goodby, J. W. Chem. Eur. J. 2003, 9, 4869-4877. (b)
Mori, H.; Mu¨ller, H. E. Prog. Polym. Sci. 2003, 28, 1403-1439. (c) de
Gennes, P.-G. Angew. Chem., Int. Ed. Engl. 1992, 31, 842-845.
(13) (a) Percec, V.; Bera, T. K.; Glodde, M.; Fu, Q.; Balagurusamy, V.
S. K.; Heiney, P. A. Chem. Eur. J. 2003, 9, 921-935. (b) Ungar, G.; Liu,
Y.; Zeng, X.; Percec, V.; Cho, W.-D. Science 2003, 299, 1208-1211. (c)
Percec, V.; Cho, W.-D.; Ungar, G.; Yeardley, D. J. P. Chem. Eur. J. 2002,
8, 2011-2025. (d) Percec, V.; Cho, W.-D.; Ungar, G.; Yeardley, D. J. P.
J. Am. Chem. Soc. 2001, 123, 1302-1315. (e) Percec, V.; Ahn, C.-H.;
Ungar, G.; Yeardley, D. J. P.; Moller, M.; Sheiko, S. S. Nature (London)
1998, 391, 161-164. (f) Percec, V.; Cho, W.-D.; Mosier, P. E.; Ungar, G.;
Yeardley, D. J. P. J. Am. Chem. Soc. 1998, 120, 11061-11070. (g) Hudson,
S. D.; Jung, H.-T.; Percec, V.; Cho, W.-D.; Johansson, G.; Ungar, G.;
Balagurusamy, V. S. K. Science 1997, 278, 449-452.
(14) Issidorides, C. H.; Gulen, R. Organic Syntheses; Wiley: New York,
1963; Collect. Vol. IV, pp 679-680.
(15) Moore, J. S.; Stupp, S. I. Macromolecules 1990, 23, 65-70
(16) Percec, V.; Ahn, C.-H.; Bera, T. K.; Ungar, G.; Yeardley, D. J. P.
Chem. Eur. J. 1999, 5, 1070-1083.
2496
Org. Lett., Vol. 6, No. 15, 2004