been described.4c,11 Despite this, only a few of these
procedures provide the expected hydroxyalkyl-γ-lactams and
prolinols in a highly enantioselective way.
with functionalized nitroalkanes is rather scarce. In this Letter
we describe the enantioselective Henry reaction between
aldehydes and methyl 4-nitrobutyrate and the transformation
of the resulting products into chiral nonracemic γ-lactams,
levulinic acid derivatives, and δ-lactones (Scheme 1).
The construction of multifunctional chiral building blocks
that can provide access to different structural motifs has raised
much interest among synthetic chemists. The Henry (nitro-aldol)
reaction is a straightforward way to prepare ꢀ-hydroxy nitroal-
kanes that are versatile building blocks as a result of the
chemical versatility of both the hydroxyl and the nitro groups.
In recent years there has been much progress in the development
of enantioselective versions of the Henry reaction, especially
using nitromethane and other unfunctionalized nitroalkanes.12
However, the number of enantioselective procedures described
Scheme 1. Synthetic Applications of the Henry Products
between Aldehydes and Methyl 4-Nitrobutyrate
(2) (a) Berini, C.; Pelloux-Le´on, N.; Minassian, F.; Denis, J.-N. Org.
Biomol. Chem. 2009, 7, 4512–4516. (b) Despinoy, X. L. M.; McNab, H.
Org. Biomol. Chem. 2009, 7, 4502–4511. (c) Elford, T. G.; Hall, D. G.
Tetrahedron Lett. 2008, 49, 6995–6998. (d) Krawczyk, H.; Albrecht, L.;
Wojciechowski, J.; Wolf, W. M.; Krajewska, U.; Rozalski, M. Tetrahedron
2008, 64, 6307–6314. (e) Kanizsai, I.; Szakonyi, Z.; Sillanpa¨a¨, R.; D’hooghe,
M.; De Kimpe, N.; Fu¨lo¨p, F. Tetrahedron: Asymmetry 2006, 17, 2857–
2863. (f) Snider, B. B.; Neubert, B. J. J. Org. Chem. 2004, 69, 8952–8955.
(g) Basavaiah, D.; Rao, J. S. Tetrahedron Lett. 2004, 45, 1621–1625. (h)
Berlin, S.; Ericsson, C.; Engman, L. J. Org. Chem. 2003, 68, 8386–8396.
(i) Domingos, J. L. O.; Lima, E. C.; Dias, A. G.; Costa, P. R. R.
Tetrahedron: Asymmetry 2004, 15, 2313–2314. Konno, H.; Hiura, N.;
Yanaru, M. Heterocycles 2002, 57, 1793–1797. Roberson, C. W.; Woerpel,
K. A. J. Org. Chem. 1999, 64, 1434–1435.
Recently our group has developed camphor-derived C1-
symmetric amino pyridine ligands 4 that in the presence of
Cu(II) salts catalyze the addition of nitroalkanes to aldehydes
with very high enantioselectivity (up to 98% ee) under very
advantageous experimental conditions.13 When these conditions
were applied to the reaction of benzaldehyde (1a) and methyl
4-nitrobutyrate (2), compound 3a was obtained as an anti:syn
67:33 diastereomeric mixture with 92% and 91% ee, respec-
tively (Scheme 2, Table 1, entry 1). Further optimization was
(3) (a) Calvez, O.; Chiaroni, A.; Langlois, N. Tetrahedron Lett. 1998,
39, 9447–9450. (b) Leutenegger, U.; Umbricht, G.; Fahrni, G.; von Matt,
P.; Pfaltz, A. Tetrahedron 1992, 48, 2143–2156.
(4) (a) Flo¨gel, O.; Okala, M.; Amombo, G.; Reissig, H.-U.; Zahn, G.;
Bru¨dgam, I.; Hartl, H. Chem.sEur. J. 2003, 9, 1405–1415. (b) Delle
Monache, G.; Misiti, D.; Zappia, G. Tetrahedron:Asymmetry 1999, 10,
2961–2973. (c) Denmark, S. E.; Hurd, A. R.; Sacha, H. J. J. Org. Chem.
1997, 62, 1668–1674. (d) Kakinuma, K.; Otake, N.; Yonehara, H.
Tetrahedron Lett. 1980, 21, 167–168. (e) Otake, N.; Furihata, K.; Yonehara,
H. J. Antibiot. 1974, 27, 484–486.
(5) (a) Pyne, S. G. Curr. Org. Synth. 2005, 2, 39–57. (b) Nash, R. J.;
Fellows, L. E.; Dring, J. V.; Fleet, G. W. J.; Derome, A. E.; Hamor, T. A.;
Scofield, A. M.; Watkin, D. J. Tetrahedron Lett. 1988, 29, 1487–2490. (c)
Molyneux, R. J.; Benson, M.; Wong, R. Y.; Tropea, J. E.; Elbein, A. D. J.
Nat. Prod. 1988, 29, 2487–2490.
Scheme 2. Henry Reaction between Aldehydes and Methyl
4-Nitrobutyrate Catalyzed by 4-Cu(II) Complexes
(6) (a) Cave, A.; Chaboche, C.; Figadere, B.; Harmange, J. C.; Laurens,
A.; Peyrat, J. F.; Pichon, M.; Szlosek, M.; Cotte-Lafitte, J.; Quero, A. M.
Eur. J. Med. Chem. 1997, 32, 617–623. (b) Baussanne, I.; Schwardt, O.;
Royer, J.; Pichon, M.; Figadere, B.; Cave, A. Tetrahedron Lett. 1997, 38,
2259–2262. (c) Andres, J. M.; de Elena, N.; Pedrosa, R.; Perez-Encabo, A.
Tetrahedron: Asymmetry 2001, 12, 1503–1509.
(7) (a) For proline and prolinol-related catalysis, see: EnantioselectiVe
Organocatalysis; Dalko, P. I., Ed.; Wiley-VCH: Weinheim, 2007. (b)
Asymmetric Organocatalysis; Berkessel, A.,; Gro¨ger, H., Eds.; Wiley-VCH:
Weinheim, 2004. (c) Seayed, J.; List, B. Org. Biomol. Chem. 2005, 3, 719.
(d) Dalko, P. L.; Moisan, L. Angew. Chem., Int. Ed. 2004, 43, 5138. (e)
Marigo, M.; Jørgensen, K. A. Chem. Commun 2006, 2001.
(8) (a) Soai, K.; Ookawa, A.; Kaba, T.; Ogawa, K. J. Am. Chem. Soc.
1987, 109, 7111. (b) Shi, M.; Satoh, Y.; Makihara, T.; Masaki, Y.
Tetrahedron: Asymmetry 1995, 6, 2109. (c) Shi, M.; Satoh, Y.; Masaki, Y.
J. Chem. Soc., Perkin Trans. 1 1998, 2547. (d) Wallbaum, S.; Martens, J.
Tetrahedron: Asymmetry 1993, 4, 637. (e) Wilken, J.; Gro¨ger, H.; Kossenjans,
M.; Martens, J. Tetrahedron: Asymmetry 1997, 8, 2761. (f) Wassmann, S.;
Wilken, J.; Martens, J. Tetrahedron: Asymmetry 1999, 10, 4437.
(9) (a) Curti, C.; Sartori, A.; Battistini, L.; Rassu, G.; Zanardi, F.; Casiraghi,
G. Tetrahedron Lett. 2009, 50, 3428–3431. (b) Yoshimitsu, T.; Atsumi, C.;
Iimori, E.; Nagaoka, H.; Tanaka, T. Tetrahedron Lett. 2008, 49, 4473–4475.
(c) Pichon, M.; Hocquemiller, R.; Figadere, B. Tetrahedron Lett. 1999, 40,
8567–8570. (d) Pichon, M.; Jullian, J.; Figadere, B.; Cave, A. Tetrahedron
Lett. 1998, 39, 1755–1758. (e) Poli, G.; Baffoni, S. C.; Giambastiani, G.;
Reginato, G. Tetrahedron 1998, 54, 10403–10418. (f) Rassu, G.; Pinna, L.;
Spanu, P.; Zanardi, F.; Battistini, L.; Casiraghi, G. J. Org. Chem. 1997,
62, 4513–4517. (g) Baussanne, I.; Schwardt, O.; Royer, J.; Pichon, M.;
Figadere, B.; Cave, A. Tetrahedron Lett. 1997, 38, 2259–2262.
carried out by changing solvent, copper salt, and base (Table
1). The best result was reached with Cu(OTf)2 and Et3N in
MeOH (entry 8), which produced compound 3a as an anti:syn
85:15 diastereomeric mixture with 96% and 90% ee, respec-
tively. We also checked the reaction with tert-butyl 4-nitrobu-
tyrate and obtained the corresponding product in excellent yield
but lower stereoselectively than with methyl ester 2 (entry 9).
The scope of the reaction under the optimized conditions was
studied with a number of aldehydes (Table 2). The reaction
temperature was adjusted according to the reactivity of the
(10) (a) Zhou, X.; Liu, W.-J.; Ye, J.-L.; Huang, P.-Q. J. Org. Chem.
2007, 72, 8904–8909. (b) Koseki, Y.; Kusano, S.; Ichi, D.; Yoshida, K.;
Nagasaka, T. Tetrahedron 2000, 56, 8855–8865.
(12) Reviews: (a) Luzzio, F. A. Tetrahedron 2001, 57, 915–945. (b)
Palomo, C.; Oiarbide, M.; Mielgo, A. Angew. Chem., Int. Ed. 2004, 43,
5442–5444. (c) Boruwa, J.; Gogoi, N.; Saikia, P. P.; Barua, N. C.
Tetrahedron: Asymmetry 2006, 17, 3315–3326. (d) Palomo, C.; Oiarbide,
M.; Laso, A. Eur. J. Org. Chem. 2007, 2561–2574.
(11) Wardrop, D. J.; Bowen, E. G.; Forslund, R. E.; Sussman, A. D.;
Weerassekera, S. L. J. Am. Chem. Soc. 2010, 132, 1188–1189.
Org. Lett., Vol. 12, No. 13, 2010
3059