4888
Z. Fang et al. / Tetrahedron Letters 53 (2012) 4885–4888
cross-section of dimmer 1 is 420 GM (1 GM = 1 Â 10À50 cm4s/pho-
ton). With the growth of molecular size, the cross-section dramat-
ically increases to 1200 GM for tetramer 2. However, the increase
from 2 to 3 (1300 GM) is somehow saturated, which is somehow
in agreement with the linear absorption. We reported dendritic
hexamer with 30% enhancement relative to tetramer.16 Compared
with PAM structure, dendritic hexamer features a more branched
structure, which facilitates the growth of two-photon absorption.17
To achieve higher two-photon absorption cross-section, multifunc-
tional groups, for example electron-donating and withdrawing
groups could be introduced in future work.
In conclusion, we synthesize a triphenylamine-containing PAM
by one-step Sonogashira reaction. Two three-electron oxidation
processes have been observed in cyclic voltammetry. The two-
photon absorption cross section is significantly larger than the
phenylacetylene macrocycle with donor and acceptor reported
with ꢀ125 GM.7 Future studies will be focusing on the modification
of exterior and interior function groups for higher cross-section and
biocompatible character.
References and notes
1. (a) Venkataraman, D.; Lee, S.; Zhang, J.; Moore, J. S. Nature 1994, 371, 591–593;
(b) Bong, D. T.; Clark, T. D.; Granja, J. R.; Ghadiri, M. R. Angew. Chem. 2001, 113,
1016–1041
2. Staab, H. A.; Neunhoeffer, K. Synthesis 1974, 424.
3. Buchko, C. J.; Wilson, P. M.; Xu, Z.; Zhang, J.; Moore, J. S.; Martin, D. C. Polymer
1995, 36, 1817–1825.
4. (a) Mindyuk, O. Y.; Stetzer, M. R.; Heiney, P. A.; Nelson, J. C.; Moore, J. S. Adv.
Mater. 1998, 10, 1363–1366; (b) Zhang, J.; Moore, J. S. J. Am. Chem. Soc. 1994,
116, 2655–2656.
5. Bedard, T. C.; Moore, J. S. J. Am. Chem. Soc. 1995, 117, 10662–10671.
6. Hoger, S.; Enkelmann, V. Angew. Chem., Int. Ed. Engl. 1995, 34, 2713–2716.
7. Pyun, O. S.; Yang, W.; Jeong, M.-Y.; Lee, S. H.; Kang, K. M.; Jeon, S.-J.; Cho, B. R.
Tetrahedron Lett. 2003, 44, 5179–5182.
8. (a) Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913–915; (b) Mori, T.;
Obata, K.; Imaizumi, K.; Mizutani, T. Appl. Phys. Lett. 1996, 69, 3309–3311.
9. (a) Perry, J. W.; Barlow, S.; Ehrlich, J. E.; Heikal, A. A.; Hu, Z. Y.; Lee, I. Y. S.;
Mansour, K.; Marder, S. R.; Rockel, H.; Rumi, M.; Thayumanavan, S.; Wu, X. L.
Nonlinear Opt. 1999, 21, 225; (b) Lee, H. J.; Sohn, J.; Hwang, J.; Park, S. Y.; Choi,
H.; Cha, M. Chem. Mater. 2004, 16, 456–465.
10. (a) Sobolev, A. N.; Belsky, V. K.; Romm, I. P.; Chernikova, N. Y.; Guryanova, E. N.
Acta Cryst. C 1985, 41, 967–971; (b) Sander, R.; Stumpflen, V.; Wendorff, J. H.;
Greiner, A. Macromolecules 1996, 29, 7705–7708; (c) Yang, J. S.; Chiou, S. Y.;
Liau, K. L. J. Am. Chem. Soc. 2002, 124, 2518–2527.
11. Seo, E. T.; Nelson, R. F.; Fritsch, J. M.; Marcoux, L. S.; Leedy, D. W.; Adams, R. N. J.
Am. Chem. Soc. 1966, 88, 3498–3503.
12. Flanagan, J. B.; Margel, S.; Bard, A. J.; Anson, F. C. J. Am. Chem. Soc. 1978, 100,
4248–4253.
13. Samoc, M.; Samoc, A.; Luther-Davies, B.; Bao, Z.; Yu, L.; Hsieh, B.; Scherf, U. J.
Opt. Soc. Am. B 1998, 15, 817–825.
14. (a) Fang, Z.; Zhang, X.; Lai, Y.-H.; Liu, B. Chem. Commun. 2009, 920–922; (b) Xu,
C.; Williams, R. M.; Zipfel, W.; Webb, W. W. Bioimaging 1996, 4, 198–207; (c)
Meshalkin, Y. P.; Chunosova, S. S. Quantum Electron. 2005, 35, 527–530.
15. Hermann, J. P.; Ducuing, J. Opt. Commun. 1972, 6, 101–105.
16. Fang, Z.; Teo, T.-T.; Cai, L.; Lai, Y.-H.; Samoc, A.; Samoc, M. Org. Lett. 2009, 11, 1–
4.
Acknowledgments
This work was supported by the National University of Singa-
pore (NUS). The authors thank the staff at the Chemical, Molecular
and Materials Analysis Centre, Department of Chemistry, NUS, for
their technical assistance.
Supplementary data
17. McDonagh, A. M.; Humphrey, M. G.; Samoc, M.; Luther-Davies, B.
Organometallics 1999, 18, 5195–5197.
Supplementary data associated with this article can be found, in