Journal of the American Chemical Society
Communication
observed by CV (ii, Scheme 1). After an oxidation22 of ii by the
photocatalyst excited state to the octahedral intermediate iii,
alkyne coordination provides intermediate iv.23 Insertion and
subsequent reductive elimination from v generates a Co(I)
species which is reduced to the active cobalt(0) species by the IrII
reduced state.24 Thus, the unique features inherent to photo-
redox catalysis allow the mechanism to access every oxidation
step at Co between 0 and 3.
(5) (a) Agenet, N.; Buisine, O.; Slowinski, F.; Gandon, V.; Aubert, C.;
Malacria, M. Org. React. 2007, 68, 1−302. (b) Vollhardt, K. P. C. Angew.
Chem., Int. Ed. Engl. 1984, 23, 539−556. (c) Gandon, V.; Aubert, C.;
Malacria, M. Chem. Commun. 2006, 2209−2217.
(6) (a) Gandeepan, P.; Cheng, C.-H. Acc. Chem. Res. 2015, 48, 1194−
1206. (b) Slowinski, F.; Aubert, C.; Malacria, M. Adv. Synth. Catal. 2001,
343, 64−67.
(7) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013,
113, 5322−5363.
In conclusion, we have identified a cobalt catalyst that enables
light-controlled arene assembly using visible light as the external
stimulus. This photochemically gated process provides unique
opportunities for external regulation of catalysis, illustrated with
the photolithographic patterning of PDMS.
(8) (a) Tellis, J. C.; Primer, D. N.; Molander, G. A. Science 2014, 345,
433−436. (b) Zuo, Z.; Ahneman, D.; Chu, L.; Terrett, J.; Doyle, A. G.;
MacMillan, D. W. C. Science 2014, 345, 437−440. (c) Terrett, J. A.;
Cuthbertson, J. D.; Shurtleff, V. W.; MacMillan, D. W. C. Nature 2015,
524, 330−334.
(9) Hecht (ref 3) loosely defines light-gated catalysis to include photo-
caged and photoswitchable catalysis, the latter presumably requiring a
light-stimulus to achieve both on and off states. We prefer to borrow the
definition of light-gated as used in the ion-channel literature which states
that the channel (or catalyst) is open or on with light and off or closed in
its absence. It specifically excludes photocaged examples from the
definition; see: Banghart, M. R.; Volgraf, M.; Trauner, D. Biochemistry
2006, 45, 15129−15141.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Procedures and compound characterization (PDF)
(10) Cismesia, M. A.; Yoon, T. P. Chem. Sci. 2015, 6, 5426−5434.
(11) For examples of spatially and temporally controlled transition
metal catalysis, see: (a) Davis, J. J.; Bagshaw, C. B.; Busuttil, K. L.;
Hanyu, Y.; Coleman, K. S. J. Am. Chem. Soc. 2006, 128, 14135−14141.
(b) Buchner, M. R.; Bechlars, B.; Ruhland, K. J. Organomet. Chem. 2013,
744, 60−67.
AUTHOR INFORMATION
Corresponding Author
ORCID
■
(12) Roth, H. G.; Romero, N. A.; Nicewicz, D. A. Synlett 2016, 27,
714−723.
Present Address
(13) We interpret the modest increase in catalytic activity as a thermal
disproportionation of inactive Co catalyst (likely Co(I) to Co(II) and
Co(0)).
§Department of Chemistry, Columbia University, New York,
New York 10027, United States
(14) Aryl diazonium salts. In New coupling agents in polymer and surface
science; Chehimi, M. M., Ed.; Wiley-VCH: Weinheim, 2012.
Funding
NSFCHE-1339674.
(15) Kirkman, P. M.; Guell, A. G.; Cuharuc, A. S.; Unwin, P. R. J. Am.
̈
Notes
Chem. Soc. 2014, 136, 36−39.
The authors declare the following competing financial
interest(s): A provisional patent has been filed on this
technology.
(16) Koh, S.-J. Nanoscale Res. Lett. 2007, 2, 519−545.
(17) (a) Miller, P. J.; Matyjaszewski, K. Macromolecules 1999, 32,
8760−8767. (b) Semsarzadeh, M. A.; Abdollahi, M. J. Appl. Polym. Sci.
2013, 123, 2423−2430.
ACKNOWLEDGMENTS
(18) (a) Fors, B. P.; Poelma, J. E.; Menyo, M. S.; Robb, M. J.;
Spokoyny, D. M.; Kramer, J. W.; Waite, J. H.; Hawker, C. J. J. Am. Chem.
Soc. 2013, 135, 14106−14109. (b) Poelma, J. E.; Fors, B. P.; Meyers, G.
F.; Kramer, J. W.; Hawker, C. J. Angew. Chem., Int. Ed. 2013, 52, 6844−
6848. (c) Adzima, B. J.; Tao, Y.; Kloxin, C. J.; DeForest, C. A.; Anseth, K.
S.; Bowman, C. N. Nat. Chem. 2011, 3, 258−261. (d) For a recent
review, see: Barner-Kowollik, C.; Goldmann, A. S.; Schacher, F. H.
Macromolecules 2016, 49, 5001−5016.
■
This research was conducted in connection with the Catalysis
Collaboratory for Light-activated Earth Abundant Reagents (C-
CLEAR), which is supported by the National Science
Foundation and the Environmental Protection Agency through
the Network for Sustainable Molecular Design and Synthesis
program (NSFCHE-1339674). We thank Rachel Feeney and
Charles S. Henry (CSU) for technical assistance and Travis
Bailey (CSU) for access to instrumentation.
́
(19) Buriez, O.; Labbe, E.; Perichon, J. J. Electroanal. Chem. 2006, 593,
99−104.
(20) Voltammetry on CoBr2·(PCy3)2 also suggests Co0 is likely
generated via initial reduction to CoI and subsequent bimolecular
disproportionation to deliver a Co0 and CoII species.
REFERENCES
■
(1) (a) Treat, N. J.; Fors, B. P.; Kramer, J. W.; Christianson, M.; Chiu,
C.-Y.; Read de Alaniz, J.; Hawker, C. J. ACS Macro Lett. 2014, 3, 580−
584. (b) Theriot, J. C.; Lim, C.-H.; Yang, H.; Ryan, M. D.; Musgrave, C.
B.; Miyake, G. M. Science 2016, 352, 1082−1086. (c) Dadashi-Silab, S.;
Tasdelen, M. A.; Yagci, Y. J. Polym. Sci., Part A: Polym. Chem. 2014, 52,
2878−2888. (d) Perkowski, A. J.; You, W.; Nicewicz, D. A. J. Am. Chem.
Soc. 2015, 137, 7580−7583.
(21) For evidence of Co0 activity in the [2+2+2], see: Chiusoli, G. P.;
Pallini, L.; Terenghi, G. Transition Met. Chem. 1984, 9, 360−362.
(22) The irreversibility of this intermediate observed by CV is
potentially due to a rapid chemical event (coordination or insertion of
alkyne) following oxidation. See SI, Figure S3.
(23) For octahedral cobaltacyclopentadiene, see: Bouayad, A.;
Dartiguenave, M.; Menu, M.-J.; Dartiguenave, Y. Organometallics
1989, 8, 629−637.
(24) Alternatively, a bimolecular disproportionation reaction could
regenerate active intermediate i and a reducible cobalt(II) species.
(2) Leibfarth, F. A.; Mattson, K. M.; Fors, B. P.; Collins, H. A.; Hawker,
C. J. Angew. Chem., Int. Ed. 2013, 52, 199−210.
(3) Stoll, R. S.; Hecht, S. Angew. Chem., Int. Ed. 2010, 49, 5054−5075.
(4) (a) Blanco, V.; Leigh, D. A.; Marcos, V. Chem. Soc. Rev. 2015, 44,
5341−5370. (b) Neilson, B. M.; Bielawski, C. W. ACS Catal. 2013, 3,
1874−1885. (c) Teator, A. J.; Lastovickova, D. N.; Bielawski, C. W.
Chem. Rev. 2016, 116, 1969−1992. (e) Shanmugam, S.; Xu, J.; Boyer, C.
J. Am. Chem. Soc. 2015, 137, 9174−9185. (d) Trotta, J. T.; Fors, B. P.
Synlett 2016, 27, 702−713.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX