Full Paper
1
H, phenyl), 7.98 (m, 2 H, phenyl), 8.48 (s, 1 H, phenyl), 8.72 (m, 4
mation).[22] TD-DFT calculations were also performed in B3LYP/
LANL2DZ mode in the excited state.
1
3
H, phenyl), 12.12 (s, 1 H, NH) ppm. C NMR ([D ]DMSO): δ = 114.89,
6
1
1
3
21.46, 124.38, 128.89, 131.17, 137.39, 139.23, 145.99, 149.26,
Supporting Information (see footnote on the first page of this
+
55.01, 160.54 (C H ) ppm. ESI-MS calcd. for C H N O [M + H]
6
6
24 17
4
1
13
article): H, C NMR, FT-IR, ESI-MS, HRMS, UV/Vis titration curves,
fluorescence spectra, SEM, TEM, EDX, images (PDF), Tables and Crys-
tallographic data for 1 (CIF) are provided.
77.1400; found 377.1400.
Compound 1: To a solution of TP1 (100 mg, 0.25 mmol) in CH Cl /
2
2
MeOH (1:1, 50 mL), the precursor complex [(PPy) Ir(μ-Cl)] (120 mg,
2
2
CCDC 1421297 (for 1) contains the supplementary crystallographic
0
1
0
.1 mmol) was added, and the resulting solution was stirred for
2 h at room temp. After filtration, a solution of NH PF (40 mg,
4
6
.25 mmol) in MeOH (5 mL) was added, and the reaction mixture
was stirred for 1 h to afford a reddish brown precipitate. It was
filtered and washed with water and diethyl ether. The product was Acknowledgments
obtained as orange crystals after slow evaporation of MeOH over a
The authors gratefully acknowledge the Department of Science
CH Cl2 solution of the complex, yield 71.4 % (75 mg).
2
and Technology (DST), New Delhi, India for providing financial
assistance through Scheme SR/S1/IC-25/2011 and also the Uni-
versity Grants Commission (UGC), New Delhi, India for the
C H F IrN O P (1052.01): calcd. C 53.66, H 3.26, N 7.99; found C
4
7
34
6
6 2
1
5
5
(
3.72, H 3.20, N 8.03. H NMR ([D ]DMSO): δ = 3.93 (s, 3 H, OCH ),
6
3
.45 (d, 2 H, phenyl), 5.87 (d, 2 H, phenyl), 6.28 (d, 2 H, phenyl), 6.31
s, 1 H, phenyl), 6.58 (d, 2 H, phenyl), 6.61 (t, 1 H, phenyl), 6.73 (t, 1 award of a Senior Research Fellowship (19-6/2011(i)EU-IV) to
H, phenyl), 6.76 (s, 1 H, phenyl), 6.89 (d, 2 H, phenyl), 6.93 (t, 1 H, S. M. The authors are thankful to the Head, Department of
phenyl), 7.09 (d, 2 H, phenyl), 7.22 (s, 2 H, phenyl), 7.42 (d, 1 H, Chemistry, Institute of Science, Banaras Hindu University, Vara-
phenyl), 7.58 (d, 2 H, phenyl), 7.70 (d, 2 H, phenyl), 7.80 (d, 2 H,
phenyl), 7.83 (t, 1 H, phenyl), 8.49 (t, 1 H, phenyl), 8.96 (d, 1 H,
phenyl), 9.10 (s, 1 H, phenyl), 12.25 (s, 1 H, NH) ppm. 13C NMR
nasi (U. P.), India, for extending the use of the laboratory facili-
ties.
(
1
1
[D ]DMSO): δ = 55.04 (OCH ), 115.12, 119.55, 122.91, 123.10,
25.14, 128.12, 129.61, 130.41, 131.59, 134.78, 138.05, 142.40,
6
3
Keywords: Iridium · Gold · Terpyridine ligands ·
47.01, 148.69, 151.04, 156.26, 161.11, 166.14, 167.59 (C H ) ppm. Cyclometalation · Aggregation · Nanoparticles
6
6
+
ESI-MS calcd. for C H IrN O [M] 907.2400; found 907.2316.
47
34
6 2
Compound 2: The product was obtained as a red precipitate by
following the above procedure for 1 with use of TP2 (95 mg,
[1] a) G. Nasr, A. Guerlin, F. Dumur, S. A. Baudron, E. Dumas, F. Miomandre,
G. Clavier, M. Sliwa, C. R. Mayer, J. Am. Chem. Soc. 2011, 133, 6501–6504;
b) J. M. Fernández-Hernández, C.-H. Yang, J. I. Beltran, V. Lemaur, F. Polo,
R. Fröhlich, J. Cornil, L. D. Cola, J. Am. Chem. Soc. 2011, 133, 10543–
0
.25 mmol), yield 78.4 % (80 mg). C H F IrN OP (1021.98): calcd.
46 32 6 6
1
C 54.06, H 3.16, N 8.22; found C 54.13, H 3.21, N 8.16. H NMR
[D ]DMSO): δ = 6.25 (s, 1 H, phenyl), 6.54 (s, 1 H, phenyl), 6.73 (s,
1
0558.
(
6
[
2] a) S. Lamansky, P. Djurovich, D. Murphy, F. A. Razzaq, H. E. Lee, C. Adachi,
2
H, phenyl), 6.94 (d, 2 H, phenyl), 7.19 (t, 4 H, phenyl), 7.40 (d, 1 H,
P. E. Burrows, S. R. Forrest, M. E. Thompson, J. Am. Chem. Soc. 2001, 123,
phenyl), 7.47 (s, 2 H, phenyl), 7.63 (s, 2 H, phenyl), 7.84 (d, 2 H,
phenyl), 7.78 (s, 2 H, phenyl), 7.90 (s, 2 H, phenyl), 8.21 (d, 5 H,
phenyl), 8.96 (s, 2 H, phenyl), 8.99 (s, 1 H, phenyl), 9.31 (s, 1 H,
4
304–4312; b) M. X. Yu, Q. Zhao, L. X. Shi, F. Y. Li, Z. G. Zhou, H. Yang, Y.
Tao, C. H. Huang, Chem. Commun. 2008, 2115–2117; c) K. K.-W. Lo, B. T.-
N. Chan, H.-W. Liu, K. Y. Zhang, S. P.-Y. Li, T. S.-M. Tang, Chem. Commun.
2013, 49, 4271–4273; d) K. K.-W. Lo, C.-K. Chung, T. K.-M. Lee, L.-H. Lui,
K. H.-K. Tsang, N. Zhu, Inorg. Chem. 2003, 42, 6886–6897.
1
3
phenyl), 12.24 (s, 1 H, NH) ppm. C NMR ([D ]DMSO): δ = 95.99,
6
1
1
1
01.77, 118.86, 119.89, 123.14, 124.33, 125.92, 127.98, 129.97,
36.33, 137.24, 138.56, 139.47, 142.16, 146.75, 148.64, 150.04,
56.51, 161.16, 165.47 (C H ) ppm. ESI-MS calcd. for C H IrN O
[3] a) P. Alam, G. Kaur, C. Climent, S. Pasha, D. Casanov, P. Alemany, A. Roy-
choudhury, I. R. Laskar, Dalton Trans. 2014, 43, 16431–16440; b) M. L. Ho,
F. M. Hwang, P. N. Chen, Y. H. Hu, Y. M. Cheng, K. S. Chen, G. H. Lee, Y.
Chi, P. T. Chou, Org. Biomol. Chem. 2006, 4, 98–103.
6
6
46 32
6
+
[M] 877.2300; found 877.2173.
[
4] a) F. Miomandre, S. Stancheva, J.-F. Audibert, A. Brosseau, R. B. Pansu, M.
Lepeltier, C. R. Mayer, J. Phys. Chem. C 2013, 117, 12806–12814; b) K. J.
Castor, K. L. Metera, U. M. Tefashe, C. J. Serpell, J. Mauzeroll, H. F. Sleiman,
Inorg. Chem. 2015, 54, 6958–6967; c) B. Du, L. Wang, H. B. Wu, W. Yang,
Y. Zhang, R. S. Liu, M. L. Sun, J. Peng, Y. Cao, Chem. Eur. J. 2007, 13, 7432–
X-ray Structural Determinations: Crystals of 1 suitable for X-ray
single-crystal analysis were obtained by slow diffusion of MeOH
over a CH Cl2 solution of the complex. X-ray spectroscopic data
2
were recorded with a Bruker Kappa Apex-II diffractometer at room
temp. with Mo-Kα radiation (λ = 0.71073 Å). The structure was
7
442; d) S. Sinha, S. Mandal, P. Gupta, RSC Adv. 2015, 5, 99529–99539; e)
J. Kübel, A. Winter, U. S. Schubert, B. Dietzek, J. Phys. Chem. A 2014, 118,
2137–12148.
solved by direct methods (SHELXS 97) and refined by full-matrix
least squares on F2 (SHELX 97).
[18]
All non-H atoms were treated
1
anisotropically. The H atoms attached to carbon were included as
fixed contribution and geometrically calculated and refined with
[5] a) G.-G. Shan, L.-Y. Zhang, H.-B. Li, S. Wang, D.-X. Zhu, P. Li, C.-G. Wang,
Z.-M. Su, Y. Liao, Dalton Trans. 2012, 41, 523–530; b) Y. Li, N. Dandu, R.
Liu, L. Hu, S. Kilina, W. Sun, ACS Appl. Mater. Interfaces 2013, 5, 6556–
6570; c) H. J. Bolink, L. Cappelli, S. Cheylan, E. Coronado, R. D. Costa, N.
Lardiés, M. K. Nazeeruddin, E. Ortí, J. Mater. Chem. 2007, 17, 5032–5041;
d) L. He, L. Duan, J. Qiao, R. J. Wang, P. Wei, L. D. Wang, Y. Qiu, Adv. Funct.
Mater. 2008, 18, 2123–2131; e) R. D. Costa, E. Ortí, H. J. Bolink, S. Graber,
C. E. Housecroft, E. C. Constable, Adv. Funct. Mater. 2010, 20, 1511–1520.
the SHELX riding model. The computer program PLATON was used
for analyzing the interaction and stacking distances.[19]
Theoretical Calculations: Molecular structures of 1 and 2 were de-
signed with ChemBioDraw Ultra software, and 3D views of the
structures were optimized by minimizing the energy of the mol-
ecule with the MM2 mode of the same software. Optimization and
energy calculations were performed with Gaussian 09 by using den-
[
6] a) Q. Zhao, L. Li, F. Y. Li, M. X. Yu, Z. P. Liu, T. Yi, C. H. Huang, Chem.
Commun. 2008, 685–687; b) Y. Hong, J. W. Y. Lama, B. Z. Tang, Chem.
Commun. 2009, 4332–4353; c) Y. Hong, J. W. Y. Lama, B. Z. Tang, Chem.
Soc. Rev. 2011, 40, 5361–5388.
[
20,21]
sity functional theory (DFT) in B3LYP mode in the ground state.
The basis set 6-31G(d, p) has been used for all light atoms (C, H, N,
O, P, F), while LANL2DZ was used for the metal atom (Ir) with an
effective-core pseudopotential (Figure S26 in the Supporting Infor-
[
7] a) G. G. Shan, D. X. Zhu, H. B. Li, P. Li, Z. M. Su, Y. Liao, Dalton Trans. 2011,
40, 2947–2953; b) M. J. Li, P. C. Jiao, W. W. He, C. Q. Yi, C. W. Li, X. Chen,
G. N. Chen, M. S. Yang, Eur. J. Inorg. Chem. 2011, 197–200.
Eur. J. Inorg. Chem. 0000, 0–0
www.eurjic.org
7
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim