Organic Letters
Letter
́
́
(4) (a) Mauduit, M.; Basle, O.; Clavier, H.; Crevisy, C.; Denicourt-
Nowicki, A. In Comprehensive Organic Synthesis II; Knochel, P.,
Molander, G. A., Eds.; Elsevier, 2014; Vol. 4, p 186. (b) For a seminal
review dealing with Cu-ACA in natural product synthesis, see: Calvo, B.
C.; Buter, J.; Minnaard, A. J. Applications to the synthesis of natural
products. In Copper-Catalyzed Asymmetric Synthesis; Alexakis, A.,
Krause, N., Woodward, S., Eds.; Wiley, 2014; Chapter 14, pp 373−
447. (c) Cordova, A. Catalytic Asymmetric Conjugate Reactions; Wiley-
In conclusion, Cu/Taniaphos catalyzed efficiently the β-
borylation of α,β-unsaturated 2-acyl-N-methylimidazoles. After
NaBO3-mediated oxidation, the corresponding secondary
alcohols were obtained in high yields and enantioselectivities
(10 examples, 66−98%). Excellent enantioselectivities (93 to
98% ee) were obtained with aliphatic chains, including
functionalized ones, with the exception of γ-branched substrates
which gave moderate selectivity (up to 73% ee). Following the
readily postfunctionalization of acylimidazole fragment, consec-
utive Cu-catalyzed ACB/ACA recations were successfully
achieved, leading to 1,3,5-(Me, OH, Me) and 1,3,5-(OH, OH,
Me) motifs in good yields and excellent stereoinductions (>95:5
dr). We have thus been able to propose a unified strategy for the
construction of highly desirable 1,3,5,...n (OH, Me) motifs
prevalent in biologically relevant molecules. Implementation of
this methodology in the total synthesis of natural products is
currently underway in our laboratories.
̈
̀
VCH, 2010. (d) Alexakis, A.; Backvall, J. E.; Krause, N.; Pamies, O.;
Dieguez, M. Chem. Rev. 2008, 108, 2796−2823.
́
(5) For selected references on the use of acylimidazoles as ester
surrogates in enantioselective reactions, see: (a) Evans, D. A.; Fandrick,
K. R.; Song, H.-J.; Scheidt, K. A.; Xu, R. J. Am. Chem. Soc. 2007, 129,
10029−10041. (b) Zhang, L.; Meggers, E. Acc. Chem. Res. 2017, 50,
320−330. (c) Boersma, A. J.; Megens, R. P.; Feringa, B. L.; Roelfes, G.
Chem. Soc. Rev. 2010, 39, 2083−2092.
́
́
(6) (a) Drissi-Amraoui, S.; Morin, M.; Crevisy, C.; Basle, O.; de
Figueiredo, R. M.; Mauduit, M.; Campagne, J. M. Angew. Chem., Int. Ed.
2015, 54, 11830−11834. (b) Drissi-Amraoui, S.; Schmid, T.;
́
́
Lauberteaux, J.; Crevisy, C.; Basle, O.; de Figueiredo, R. M.; Halbert,
ASSOCIATED CONTENT
* Supporting Information
́
S.; Gerard, H.; Mauduit, M.; Campagne, J. M. Adv. Synth. Catal. 2016,
■
358, 2519−2540.
S
(7) For selected references, see: (a) Lee, J.; Yun, J. Angew. Chem., Int.
Ed. 2008, 47, 145−147. (b) Feng, X.; Yun, J. Chem. Commun. 2009,
6577−6579. (c) O’Brien, J.; Lee, K.; Hoveyda, A. J. Am. Chem. Soc.
2010, 132, 10630−10633. (d) Park, J.; Lackey, H.; Rexford, M.; Kovnir,
K.; Shatruk, M.; McQuade, D. Org. Lett. 2010, 12, 5008−5011. (e) Sim,
H.-S.; Feng, X.; Yun, J. Chem. - Eur. J. 2009, 15, 1939−1943. (f) Chen,
I.; Kanai, M.; Shibasaki, M. Org. Lett. 2010, 12, 4098−4101.
(g) Ibrahem, I.; Breistein, P.; Cordova, A. Angew. Chem., Int. Ed.
2011, 50, 12036−12041. (h) Moure, A.; Arrayas, R.; Carretero, J.
Chem. Commun. 2011, 47, 6701−6703. (i) Sole, C.; Whiting, A.;
Gulyas, H.; Fernandez, E. Adv. Synth. Catal. 2011, 353, 376−384.
(j) Kobayashi, S.; Xu, P.; Endo, T.; Ueno, M.; Kitanosono, T. Angew.
Chem., Int. Ed. 2012, 51, 12763−12766. (k) Wu, H.; Radomkit, S.;
O’Brien, J. M.; Hoveyda, A. H. J. Am. Chem. Soc. 2012, 134, 8277−
8285. (l) Zhao, L.; Ma, Y.; He, F.; Duan, W.; Chen, J.; Song, C. J. Org.
Chem. 2013, 78, 1677−1681. (m) Luo, Y.; Roy, I. D.; Madec, A. G. E.;
Lam, H. W. Angew. Chem., Int. Ed. 2014, 53, 4186−4190. (n) Xie, J.-B.;
Lin, S.; Qiao, S.; Li, G. Org. Lett. 2016, 18, 3926−3929. (o) Jiang, Q.;
Guo, T.; Gao, R.; Wang, Q.; Lou, J.; Yu, Z. J. Org. Chem. 2018, 83,
7981−7993.
The Supporting Information is available free of charge on the
Experimental procedures (PDF)
AUTHOR INFORMATION
Corresponding Authors
■
́
́
́
ORCID
́
́
Present Address
§
́
(O.B.) LCC-CNRS, Universite de Toulouse, CNRS, Toulouse,
(8) (a) Pujol, A.; Whiting, A. J. Org. Chem. 2017, 82, 7265−7279.
(b) Hartmann, E.; Oestreich, M. Org. Lett. 2012, 14, 2406−2409.
(9) For selected reviews, see: (a) Westcott, S. A.; Fernandez, E. Adv.
Organomet. Chem. 2015, 63, 39−130. (b) Hemming, D.; Westcott, S.
A.; Santos, W. L.; Steel, P. G.; Fritzemeier, R. Chem. Soc. Rev. 2018, 47,
7477−7494. (c) Neeve, E.; Geier, S.; Mkhalid, I.; Westcott, S.; Marder,
T. Chem. Rev. 2016, 116, 9091−9161.
France.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
The project was supported by funds from the ENSCM, the
ENSCR, the CNRS, and the Fondation pour le developpement
■
(10) Tarrieu, R.; Dumas, A.; Thongpaen, J.; Vives, T.; Roisnel, T.;
́
́
́
Dorcet, V.; Crevisy, C.; Basle, O.; Mauduit, M. J. Org. Chem. 2017, 82,
1880−1887.
(11) For the seminal use of Taniaphos ligand in the ACB reactions of
cyclic enones and lactones, see ref 7b.
de la chimie des substances naturelles et ses applications (JL
PhD grant). Special thanks to Takasago Company for a generous
gift of citronellal.
(12) The relatively low (45%) yield obtained in this reaction is mainly
due to the unoptimized oxidation reaction: 10% of the protodeborated
compound could also be isolated. Moreover, compound 2j and pinacol
are unseparable by flash chromatography, thus requiring elimination of
the pinacol byproduct by evaporation in vacuo. Under these
purification conditions, undesired slow sublimation of 2j could also
be observed.
(13) Bao, D.; Wu, H.; Liu, C.; Xie, J.; Zhou, Q. Angew. Chem., Int. Ed.
2015, 54, 8791−8794.
(14) (S) configurations for compounds 2h, 2i, and 2j due to inversed
priorities in the CIP system.
REFERENCES
■
(1) (a) Hertweck, C. Angew. Chem., Int. Ed. 2009, 48, 4688−4716.
(b) Yu, M. J.; Zheng, W.; Seletsky, B. M. Nat. Prod. Rep. 2013, 30,
1158−1164.
(2) (a) Zheng, K.; Xie, C.; Hong, R. Front. Chem. 2015, 3, 32. (b) ter
Horst, B.; Feringa, B.; Minnaard, A. Chem. Commun. 2010, 46, 2535−
2547. (c) Che, W.; Wen, C. D.; Zhu, S.-F.; Zhou, Q.-L. Org. Lett. 2018,
20, 3305−3309. (d) Hassan, A.; Lu, Y.; Krische, M. J. Org. Lett. 2009,
11, 3112−3115. (e) Lu, Y.; Kim, I.; Hassan, A.; Del Valle, D.; Krische,
M. J. Angew. Chem., Int. Ed. 2009, 48, 5018−5021.
(3) (a) Ota, Y.; Murayama, T.; Nozaki, K. Proc. Natl. Acad. Sci. U. S. A.
2016, 113, 2857−2861. (b) Balieu, S.; Hallett, G.; Burns, M.;
Bootwicha, T.; Studley, J.; Aggarwal, V. J. Am. Chem. Soc. 2015, 137,
4398−4403.
E
Org. Lett. XXXX, XXX, XXX−XXX