Journal of the American Chemical Society
Page 4 of 5
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
ASSOCIATED CONTENT
Supporting Information
Experimental details, preparation and characterization of the cata-
lysts. These materials are available free of charge via the Internet
at http://pubs.acs.org.
AUTHOR INFORMATION
Corresponding Author
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
pliu503@hotmail.com; e.j.m.hensen@tue.nl
ACKNOWLEDGMENT
This research was financially supported by Programme Strategic
Scientific Alliances between the Netherlands and China (Grant
No. 2008DFB5-130). We thank the Cryo-TEM Research Unit of
Eindhoven University of Technology for access to TEM facilities.
Figure 5. a) ethanol conversion, b) acetaldehyde selectivity for
temperature-dependent aerobic oxidation of ethanol over (●)
Au/MgCuCr O and (■) MgCuCr O , and non-oxidative ethanol
REFERENCES
(1) (a) Corma, A.; Iborra, S.; Velty, A. Chem. Rev. 2007, 107, 2411. (b)
Alonso, D. M.; Bond, J. Q.; Dumesic, J. A. Green Chem. 2010, 12, 1493.
2
4
2
4
dehydrogenation over (○) Au/MgCuCr
non-oxidative ethanol dehydrogenation performance vs time on
stream using Au/MgCuCr O (Reaction conditions: catalyst 0.1 g,
2 4 2 4
O and (□) MgCuCr O ; c)
(c) Gallezot, P. Chem. Soc. Rev. 2012, 41, 1538.
(2) (a) Rass-Hansen, J.; Falsig, H.; Jørgensen, B.; Christensen, C. H. J.
2
4
Chem. Technol. Biotechnol. 2007, 82, 329. (b) Sun, J.; Zhu, K.; Gao, F.;
Wang, C.; Liu, J.; Peden, C. H. F.; Wang, Y. J. Am. Chem. Soc. 2011, 133,
-
1
-1
GHSV = 100,000 mL gcat h , ethanol/He = 1/66).
1
1096.
0
to release free Au sites may be the reason for activity decreasing
(3) Takei, T.; Iguchi, N.; Haruta, M. Catal. Surv. Asia 2011, 15, 80.
with the temperature and time increasing. XPS (see Figure S7)
(4) Caro, C.; Thirunavukkarasu, K.; Anilkumar, M.; Shiju, N. R.;
+
excludes the reduction of Cu during non-oxidative ethanol dehy-
Rothenberg, G. Adv. Synth. Catal. 2012, 354, 1327.
(5) (a) Jira, R. Angew. Chem. Int. Ed. 2009, 48, 9034. (b) Keith, J. A.;
Henry, P. M. Angew. Chem. Int. Ed. 2009, 48, 9038.
drogenation and temperature-programmed oxidation (TPO, Figure
S10) confirms that rapid coking is the cause of the deactivation.
(6) (a) Hashmi, A. S. K.; Hutchings, G. J. Angew. Chem. Int. Ed. 2006,
On the contrary, in the presence of O , coking is suppressed and
2
4
5, 7896. (b) Pina, C. D.; Falletta, E.; Prati, L.; Rossi, M. Chem. Soc. Rev.
stable performance can be achieved.
2008, 37, 2077. (c) Corma, A.; Garcia, H. Chem. Soc. Rev. 2008, 37, 2096.
(d) Zhang, Y.; Cui, X.; Shi, F.; Deng, Y. Chem. Rev. 2012, 112, 2467.
(7) (a) Christensen, C. H.; Jørgensen, B.; Rass-Hansen, J.; Egeblad, K.;
Madsen, R.; Klitgaard, S.; Hansen, S.; Hansen, M.; Andersen, H.; Riisager,
A. Angew. Chem. Int. Ed. 2006, 45, 4648. (b) Jørgensen, B.; Christiansen,
S. E.; Thomsen, M. L.; Christensen, C. H. J. Catal. 2007, 251, 332. (c)
Tembe, S. M.; Patrick, G.; Scurrell, M. S. Gold Bull. 2009, 42, 321.
Based on the above observations, we propose that O activation
2
+
occurs on Cu sites instead of AuNP. This is supported by the
finding that Au/MgCr O is significantly less active for ethanol
2
4
oxidation than Au/MgCuCr O . The resulting active oxygen spe-
2
4
-
-
cies (O or O ) are thought to act as basic sites to facilitate O-H
bond cleavage and metal-alcoholate formation (Scheme S1).
2
6
(
(
8) Sun, K. Q.; Luo, S. W.; Xu, N.; Xu, B. Q. Catal. Lett. 2008, 124, 238.
9) Biella, S.; Rossi, M. Chem. Commun. 2003, 378.
AuNP in close proximity to such centers will act as the sites for
C-H cleavage, which is believed to be the most difficult step in
(10) Zheng, N.; Stucky, G. D. J. Am. Chem. Soc. 2006, 128, 14278.
11,13a,15
2+
alcohol oxidation.
We speculate that the oxidized Cu -OH
(11) Guan, Y.; Hensen, E. J. M. Appl. Catal. A 2009, 361, 49.
intermediates can be reduced by the proximate Au-H hydride
formed by C-H cleavage of adsorbed Au-alcoholate, accompanied
by water formation and removal, thereby recovering the initial
(12) (a) Simakova, O. A.; Sobolev, V. I.; Koltunov, K. Y.; Campo, B.;
Leino, A.-R.; Kordás, K., Murzin, D. Y. ChemCatChem 2010, 2, 1535. (b)
Sobolev, V. I.; Koltunov, K. Y.; Simakova, O. A.; Leino, A.-R.; Murzin,
D. Y. Appl. Catal. A 2012, 433-434, 88.
+
0
Cu and free Au active centers. This novel synergistic effect
+
(
13) (a) Gong, J.; Mullins, C. B. J. Am. Chem. Soc. 2008, 130, 16458. (b)
between Cu and Au provides a more efficient route for ethanol
oxidation to acetaldehyde than using previously reported Cu -
containing AuCu alloy catalysts.
0
Kong, X. M.; Shen, L. L. Catal. Commun. 2012, 24, 34.
(14) Takei, T.; Iguchi, N.; Haruta, M. New J. Chem. 2011, 35, 2227.
1
5, 16a
(15) Bauer, J. C.; Veith, G. M.; Allard, L. F.; Oyola, Y.; Overbury, S. H.;
In summary, we report for the first time an approach to achieve
highly efficient, selective and stable oxidation of ethanol to acet-
aldehyde by using MgCuCr O -spinel supported gold nanoparti-
Dai, S. ACS Catal. 2012, 2, 2537.
(16) (a) Pina, C. D.; Falletta, E.; Rossi, M. J. Catal. 2008, 260, 384. (b)
Fan, J.; Dai, Y.; Li, Y.; Zheng, N.; Guo, J.; Yan, X.; Stucky, G. D. J. Am.
Chem. Soc. 2009, 131, 15568.
(17) (a) Liu, P.; Guan, Y.; van Santen, R. A.; Li, C.; Hensen, E. J. M.
Chem. Commun. 2011, 47, 11540. (b) Liu, P.; Li, C.; Hensen, E. J. M.
Chem. Eur. J. 2012, 18, 12122.
2
4
cles. This significant progress is based on the identification of a
novel and potentially broader applicable Au-Cu synergy in alco-
hol oxidation, likely being based on the interaction of AuNPs
+
+
with Cu which activate O . The Cu species are stabilized in a
2
(18) Sobczak, I.; Szrama, K.; Wojcieszak, R.; Gaigneaux, E. M.; Ziolek,
chromite-spinel phase and become more dominant at the surface
M. Catal. Today 2012, 187, 48.
(19) Zanella, R.; Giorgio, S.; Henry, C. R.; Louis, C. J. Phys. Chem. B
2002, 106, 7634.
(20) Deutsch, K. L.; Shanks, B. H. J. Catal. 2012, 285, 235.
(21) Severino, F.; Brito, J. L.; Laine, J.; Fierro, J. L. G.; Agudo, A. L. J.
Catal. 1998, 177, 82.
(22) Platzman, I.; Brener, R.; Haick, H.; Tannenbaum, R. J. Phys. Chem.
C 2008, 112, 1101.
+
during the ethanol oxidation. Through interactions with the Cu -
containing chromite spinel the AuNPs are stable during reaction.
We have already demonstrated stable ethanol oxidation operation
o
-1 -1
at 250 C (1.5 vol% ethanol and a GHSV of 100,000 mL g
h )
cat
for 500 h. Under these conditions, the ethanol conversion is com-
plete and the acetaldehyde selectivity is 95%. It is therefore rea-
sonable to state that the novel catalyst has potential for acetalde-
hyde production from bioethanol.
(
(
23) Prasad, R. Mater. Lett. 2005, 59, 3945.
24) Zhang, M.; Li, G.; Jiang, H.; Zhang, J. Catal. Lett. 2011, 141, 1104.
D
ACS Paragon Plus Environment