ACS Catalysis
Letter
(16) Shchibrya, G. G.; Morozov, N. M.; Temkin, M. I. Kinet. Catal.
1965, 6, 1057−1059.
(17) Temkin, M. I. Adv. Catal. 1979, 28, 173−291.
(18) Kubsh, J. E.; Dumesic, J. A. AIChE J. 1982, 28, 793−800.
(19) Boreskov, G. K.; Yurieva, T. M.; Sergeeva, A. S. Kinet. Catal.
1970, 11, 374−381.
(20) Topsoe, H.; Boudart, M. J. Catal. 1973, 31, 346−359.
(21) Cherkezova-Zheleva, Z.; Mitov, I. Journal of Physics: Conference
Series 2010, 217, 012044.
(22) Armstrong, E. F.; Hilditch, T. P. Proc. R. Soc. London, Ser. A
1920, 97, 265−273.
(23) Oki, S.; Mezaki, R. J. Phys. Chem. 1973, 77, 1601−1605.
(24) Botes, F. G. Appl. Catal., A 2007, 328, 237−242.
(25) Van der Laan, G. P.; Beenackers, A. A. C. M. Appl. Catal., A
2000, 193, 39−53.
suggest that activation of surface hydroxyls to yield H2 involves
formation of surface vacant sites by CO oxidation. It appears
that the HT-WGS shift reaction is much more complex
involving multiple elementary steps than originally conceived as
reflected by eqs 2 and 3.
In conclusion, the evolution of CO2 and H2 from CO+H2O-
TPSR with equilibrated Cr2O3−Fe2O3 catalysts has, for the first
time, been able to provide experimental evidence that the HT-
WGS reaction follows a redox mechanism where the catalyst
surface is alternatively reduced by CO and reoxidized by H2O.
The alternatively proposed associative reaction mechanism for
CO2 and H2 formation proceeding through a common surface
reaction intermediate and elementary decomposition step is
disproved by the current findings. The new mechanistic insight
will contribute toward the discovery of a nontoxic Cr-free HT-
WGS catalyst for manufacture of clean H2 fuel.
(26) Boudjemaa, A.; Daniel, C.; Mirodatos, C.; Trari, M.; Auroux, A.;
Bouarab, R. C. R. Chim. 2011, 14, 534−538.
(27) Diagne, C.; Vos, P. J.; Kiennemann, A.; Perrez, M. J.; Portela, M.
F. React. Kinet. Catal. Lett. 1990, 42, 25−31.
(28) Chen, L.; Ni, G.; Han, B.; Zhou, C. G.; Wu, J. P. Acta Chim. Sin.
2011, 69, 393−398.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
(29) Huang, L.; Han, B.; Zhang, Q.; Fan, M.; Cheng, H. J. Phys.
Chem. C 2015, 119, 28934−28945.
(30) Van Natter, R. M.; Coleman, J. S.; Lund, C. R. F. J. Mol. Catal.
A: Chem. 2009, 311, 17−22.
Catalyst synthesis; in situ Raman spectroscopy details;
temperature-programmed surface reaction (TPSR) spec-
troscopy; Raman spectra of Fe2O3 and Cr2O3−Fe2O3
under dehydrated and reaction conditions (Figure S1);
MS signals during He-TPSR for equilibrated Cr2O3−
Fe2O3 catalyst (Figure S2) (PDF)
(31) Salmi, T.; Lindfors, L. E.; Bostrom, S. Chem. Eng. Sci. 1986, 41,
929−936.
(32) Salmi, T.; Bostrom, S.; Lindfors, L. E. J. Catal. 1988, 112, 345−
356.
(33) Rhodes, C.; Hutchings, G. J.; Ward, A. M. Catal. Today 1995,
23, 43−58.
(34) Poulston, S.; Rowbotham, E.; Stone, P.; Parlett, P.; Bowker, M.
Catal. Lett. 1998, 52, 63−67.
AUTHOR INFORMATION
Corresponding Author
■
(35) Zhu, M.; Wachs, I. E. ACS Catal. 2016, 6, 1764−1767.
(36) Kalamaras, C. M.; Olympiou, G. G.; Efstathiou, A. M. Catal.
Today 2008, 138, 228−234.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
The authors gratefully acknowledge financial support from
National Science Foundation Grant CBET- 1511689.
■
REFERENCES
■
(1) Licht, S.; Cui, B. C.; Wang, B. H.; Li, F. F.; Lau, J.; Liu, S. Z.
Science 2014, 345, 637−640.
(2) Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253−278.
(3) Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi,
Q. X.; Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110, 6446−6473.
(4) Bard, A. J.; Fox, M. A. Acc. Chem. Res. 1995, 28, 141−145.
(5) Navarro, R. M.; Pena, M. A.; Fierro, J. L. G. Chem. Rev. 2007,
̃
107, 3952−3991.
(6) Navarro, R. M.; Sanchez-Sanchez, M. C.; Alvarez-Galvan, M. C.;
del Valle, F.; Fierro, J. L. G. Energy Environ. Sci. 2009, 2, 35−54.
(7) Calo, E.; Giannini, A.; Monteleone, G. Int. J. Hydrogen Energy
2010, 35, 9828−9835.
(8) Bosch, C.; Wild, W. U.S. Patent US11130966A, October 6, 1914.
(9) Newsome, D. S. Catal. Rev.: Sci. Eng. 1980, 21, 275−318.
(10) Ratnasamy, C.; Wagner, J. P. Catal. Rev.: Sci. Eng. 2009, 51,
325−440.
(11) Lee, D. W.; Lee, M. S.; Lee, J. Y.; Kim, S.; Eom, H. J.; Moon, D.
J.; Lee, K. Y. Catal. Today 2013, 210, 2−9.
(12) Grunwaldt, J. D.; Kappen, P.; Hammershoi, B. S.; Troger, L.;
Clausen, B. S. J. Synchrotron Radiat. 2001, 8, 572−574.
(13) Zhu, M.; Wachs, I. E. ACS Catal. 2016, 6, 722−732.
(14) Byron Smith, R. J.; Loganathan, M.; Shantha, M. S. Int. J. Chem.
React. Eng. 2010, 8, 1−32.
(15) Kulkova, N. V.; Temkin, M. I. Zh. Fiz. Khim. 1949, 23, 695−
698.
2830
ACS Catal. 2016, 6, 2827−2830