RSC Advances
Paper
Acknowledgements
The project was supported by the National Natural Science
Foundation of China (21406045), the Natural Science Founda-
tion of Anhui Province (1508085QB46) and the Fundamental
Research Funds for the Central Universities (JZ2017HGTB0231).
References
1
A. Corma, S. Iborra and A. Velty, Chem. Rev., 2007, 107, 2411–
502.
T. Takei, N. Iguchi and M. Haruta, Catal. Surv. Asia, 2011, 15,
0–88.
2
2
8
3
4
X. B. Li and E. Iglesia, Chem.–Eur. J., 2007, 13, 9324–9330.
V. I. Sobolev and K. Y. Koltunov, ChemCatChem, 2011, 3,
1143–1145.
Fig. 8 Stability tests of Cu70 catalyst (reaction conditions: catalyst
loading ¼ 1 g, T ¼ 623 K, reactant: 25 wt% ethanol solution, total flow
5 B. Jørgensen, S. B. Kristensen, A. J. Kunov-Kruse,
R. Fehrmann, C. H. Christensen and A. Riisager, Top.
Catal., 2009, 52, 253–257.
ꢀ1
rate ¼ 2 mL h ).
6
V. V. Kaichev, Y. A. Chesalov, A. A. Saraev, A. Y. Klyushin,
A. Knop-Gericke, T. V. Andrushkevich and
V. I. Bukhtiyarov, J. Catal., 2016, 338, 82–93.
7
8
9
V. I. Sobolev, E. V. Danilevich and K. Y. Koltunov, Kinet.
Catal., 2013, 54, 730–734.
P. R. S. Medeiros, J. G. Eon and L. G. Appel, Catal. Lett., 2000,
69, 79–82.
B. Jorgensen, S. Egholmchristiansen, M. Dahlthomsen and
C. Christensen, J. Catal., 2007, 251, 332–337.
1
0 C. H. Christensen, B. Jørgensen, J. Rass-Hansen, K. Egeblad,
R. Madsen, S. K. Klitgaard, S. M. Hansen, M. R. Hansen,
H. C. Andersen and A. Riisager, Angew. Chem., Int. Ed.,
Scheme 3 A possible mechanism for the production of acetic acid
from ethanol without oxidant.
2
006, 45, 4648–4651.
1 T. Takei, J. Suenaga, T. Ishida and M. Haruta, Top. Catal.,
015, 58, 295–301.
1
1
2
2 A. B. Laursen, Y. Y. Gorbanev, F. Cavalca, P. Malacrida,
A. Kleiman-Schwarsctein, S. Kegnæs, A. Riisager,
I. Chorkendorff and S. Dahl, Appl. Catal., A, 2012, 433–434,
group and further to produce acetic acid. While the adsorbed H
proton combine with each other and evolve as molecular
hydrogen. The aldol condensation of aldehyde and ketonization
of acetic acid are all ignorable in this reaction system.
243–250.
1
3 Y. Y. Gorbanev, S. Kegnæs, C. W. Hanning, T. W. Hansen
and A. Riisager, ACS Catal., 2012, 2, 604–612.
4 S. K. Klitgaard, A. T. DeLa Riva, S. Helveg,
R. M. Werchmeister and C. H. Christensen, Catal. Lett.,
2008, 126, 213–217.
1
Conclusions
The production of acetic acid from ethanol was performed on
a series of CuCr catalysts with different Cu contents. The reac- 15 F. Liguori, C. Moreno-Marrodan, P. Barbaro and H. Sawa,
tion is carried out via two steps. First, ethanol is dehydro- Appl. Catal., A, 2017, 530, 217–225.
genated to produce aldehyde species. Second, the adsorbed 16 M. M. Rahman, S. D. Davidson, J. Sun and Y. Wang, Top.
aldehyde reacts with hydroxyl group and further produce acetic Catal., 2016, 59, 37–45.
acid. Both steps are catalysed by the Cu and/or Cu species. The 17 T. P. Brewster, W. C. Ou, J. C. Tran, K. I. Goldberg,
0
+
existence of chromium oxide raises the concentration of surface
oxygen species, thus the selectivity of acetic acid is also
S. K. Hanson, T. R. Cundari and D. M. Heinekey, ACS
Catal., 2014, 4, 3034–3038.
improved. On the other hand, high contents of Cr lead to 18 T. P. Brewster, J. M. Goldberg, J. C. Tran, D. M. Heinekey and
2
+
stabilized Cu on the catalyst surface and produce the excessive
K. I. Goldberg, ACS Catal., 2016, 6, 6302–6305.
oxidation product of carbon dioxide. The reactions are mainly 19 W. C. Ou and T. R. Cundari, ACS Catal., 2015, 5, 225–232.
occurred on the Cu component of the catalyst, the chromium 20 T. Zweifel, J.-V. Naubron and H. Gr u¨ tzmacher, Angew. Chem.,
component has a positive effect on catalytic performance. The
microscopic reaction mechanism will be further studied in our 21 E. Balaraman, E. Khaskin, G. Leitus and D. Milstein, Nat.
future work. Chem., 2013, 5, 122–125.
Int. Ed., 2009, 48, 559–563.
38592 | RSC Adv., 2017, 7, 38586–38593
This journal is © The Royal Society of Chemistry 2017