NJC
Paper
Electronic effects of linker substitution on Lewis acid cata- 29 X. Huang, D. Teschner, M. Dimitrakopoulou, A. Fedorov,
lysis with metal-organic frameworks, Angew. Chem., Int. Ed.,
012, 51, 4887–4890.
7 A. H. Valekar, K. Cho, S. K. Chitale, D. Hong, G. Cha, U. Lee,
D. W. Hwang, C. Serre, J. Chang and Y. K. Hwang, Catalytic
transfer hydrogenation of ethyl levulinate to g-valerolactone
B. Frank, R. Kraehnert, F. Rosowski, H. Kaiser, S. Schunk,
C. Kuretschka, R. Schl o¨ gl, M. Willinger and A. Trunschke,
Atomic-Scale Observation of the Metal-Promoter Interaction
in Rh-Based Syngas Upgrading Catalysts, Angew. Chem., Int.
Ed., 2019, 58, 8709–8713.
2
1
over zirconium-based metal-organic frameworks, Green 30 Z. H. Rada, H. R. Abid, J. Shang, H. Sun, Y. He, P. Webley,
Chem., 2016, 18, 4542–4552. S. Liu and S. Wang, Functionalized UiO-66 by Single and
8 J. Yu, D. Mao, G. Lu, Q. Guo and L. Han, Enhanced C Binary (OH) and NO Groups for Uptake of CO and CH
synthesis by CO hydrogenation over Rh-based catalyst supported Ind. Eng. Chem. Res., 2016, 55, 7924–7932.
on a novel SiO , Catal. Commun., 2012, 24, 25–29.
1
2
oxygenate
2
2
2
4
,
2
31 G. Bakradze, L. P. H. Jeurgens and E. J. Mittemeijer,
Valence-Band and Chemical-State Analyses of Zr and O in
Thermally Grown Thin Zirconium-Oxide Films: An XPS
Study, J. Phys. Chem. C, 2011, 115, 19841–19848.
19 L. Han, D. Mao, J. Yu, Q. Guo and G. Lu, Synthesis of
C -oxygenates from syngas over Rh-based catalyst supported
2
on SiO , TiO and SiO -TiO mixed oxide, Catal. Commun.,
2
2
2
2
2
012, 23, 20–24.
0 J. Yu, J. Yu, Z. Shi, Q. Guo, X. Xiao, H. Mao and D. Mao, The
effects of the nature of TiO supports on the catalytic perfor-
mance of Rh-Mn/TiO catalysts in the synthesis of C
nates from syngas, Catal. Sci. Technol., 2019, 9, 3675–3685.
1 L. Han, D. Mao, J. Yu, Q. Guo and G. Lu, C -oxygenates
synthesis through CO hydrogenation on SiO -ZrO sup-
32 Z. Hu, Y. Peng, Z. Kang, Y. Qian and D. Zhao, A Modulated
Hydrothermal (MHT) Approach for the Facile Synthesis of
UiO-66-Type MOFs, Inorg. Chem., 2015, 54, 4862–4868.
2
2
2
2
2
2
2
2
2
2
oxyge- 33 A. Bueno-L o´ pez, I. Such-Bas ´a n˜ ez and C. Salinas-Mart ´ı nez de
Lecea, Stabilization of active Rh species for catalytic
O on La-, Pr-doped CeO , J. Catal.,
2
2
2 3
O
2
decomposition of N
2
2
2006, 244, 102–112.
2
2
ported Rh-based catalyst: The effect of support, Appl. Catal., 34 S. Parres-Esclapez, I. Such-Basa n˜ ez, M. J. Ill ´a n-G ´o mez,
A, 2013, 454, 81–87.
2 X. Xue, J. Yu, Y. Han, X. Xiao, Z. Shi, H. Mao and D. Mao,
Zr-based metal-organic frameworks drived Rh-Mn catalysts
C. Salinas-Mart ´ı nez de Lecea and A. Bueno-L o´ pez, Study
by isotopic gases and in situ spectroscopies (DRIFTS, XPS
and Raman) of the N
2
O decomposition mechanism on Rh/
for highly selective CO hydrogenation to C
2
oxygenates,
CeO and Rh/g-Al catalysts, J. Catal., 2010, 276, 390–401.
2
2 3
O
J. Ind. Eng. Chem., 2020, 86, 220–231.
35 R. Lang, T. Li, D. Matsumura, S. Miao, Y. Ren, Y. Cui, Y. Tan,
B. Qiao, L. Lin, A. Wang, X. Wang and T. Zhang, Hydro-
formylation of Olefins by a Rhodium Single-Atom Catalyst
with Activity Comparable to RhCl(PPh ) , Angew. Chem., Int.
3 R. Burch and M. J. Hayes, The Preparation and Character-
isation of Fe-Promoted Al O -Supported Rh Catalysts for the
2
3
Selective Production of Ethanol from Syngas, J. Catal., 1997,
65, 249–261.
4 M. Ojeda, M. L. Granados, S. Rojas, P. Terreros, F. J. Garc ´ı a- 36 N. Yang and S. F. Bent, Investigation of inherent differences
3
3
1
Ed., 2016, 55, 1–6.
Garc ´ı a and J. L. G. Fierro, Manganese-promoted Rh/Al
for C -oxygenates synthesis from syngas, Appl. Catal., A,
004, 261, 47–55.
5 F. Vermoortele, R. Ameloot, A. Vimont, C. Serrec and D. De
Vos, An amino-modified Zr-terephthalate metal-organic fra-
mework as an acid-base catalyst for cross-aldol condensa-
tion, Chem. Commun., 2011, 47, 1521–1523.
O
between oxide supports in heterogeneous catalysis in the
absence of structural variations, J. Catal., 2017, 351, 49–58.
37 Y. Liu, L. Zhang, F. G o¨ ltl, M. R. Ball, I. Hermans,
T. K. Kuech, M. Mavrikakis and J. A. Dumesic, Synthesis
Gas Conversion over Rh-Mn-W C/SiO Catalysts Prepared by
2
3
2
2
x
2
Atomic Layer Deposition, ACS Catal., 2018, 8, 10707–10720.
38 F. Solymosi and M. P ´a sztor, Infrared Study of the Effect of
6 Z. Hu, Z. Kang, Y. Qian, Y. Peng, X. Wang, C. Chi and
D. Zhao, Mixed Matrix Membranes Containing UiO-66(Hf)-
H
2
on CO-induced Structural Changes In Supported Rh,
J. Phys. Chem., 1986, 90, 5312–5317.
(
H
OH)
2
Metal-Organic Framework Nanoparticles for Efficient 39 D. Jiang, Y. Ding, Z. Pan, W. Chen and H. Luo, CO Hydro-
Separation, Ind. Eng. Chem. Res., 2016, 55, 7933–7940. genation to C -oxygenates over Rh-Mn-Li/SiO Catalyst:
Alcohols, Catal.
2
/CO
2
2
2
7 M. J. Katz, Z. J. Brown, Y. J. Col o´ n, P. W. Siu, K. A. Scheidt,
R. Q. Snurr, J. T. Hupp and O. M. Farha, A facile synthesis of
Effects of Support Pretreatment with nC
-C
5
1
Lett., 2008, 121, 241–246.
UiO-66, UiO-67 and their derivatives, Chem. Commun., 2013, 40 R. R. Cavanagh and J. T. Yates Jr, Site distribution studies of
9, 9449–9451. Rh supported on Al -An infrared study of chemisorbed
8 J. Yu, D. Mao, D. Ding, X. Guo and G. Lu, New insights into CO, J. Chem. Phys., 1981, 74, 4150–4155.
the effects of Mn and Li on the mechanistic pathway for CO 41 Y. M. Choi and P. Liu, Mechanism of Ethanol Synthesis
4
2 3
O
hydrogenation on Rh-Mn-Li/SiO
2
catalysts, J. Mol. Catal. A:
from Syngas on Rh(111), J. Am. Chem. Soc., 2009, 131,
Chem., 2016, 423, 151–159.
13054–13061.
704 | New J. Chem., 2021, 45, 696--704
This journal is ©The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021