54
K. Takehira et al. / Journal of Catalysis 221 (2004) 43–54
4. Conclusion
[6] F. Basile, G. Fornasari, F. Trifiro, A. Vaccari, Catal. Today 64 (2001)
21.
[7] M.C.J. Bradford, Catal. Lett. 66 (2000) 113.
[8] Y. Schuurman, C. Mirodatos, P. Ferreira-Aparicio, I. Rodriguez-Ra-
mos, A. Guerrero-Ruiz, Catal. Lett. 66 (2000) 33.
spc-Ni/MgAl catalysts have been prepared from Mg–Al
hydrotalcite precursors containing Ni at the Mg site and
tested for the partial oxidation and autothermal reforming of
CH4 into synthesis gas. The precursors were prepared by the
coprecipitation method, thermally decomposed, and reduced
to form spc-Ni/MgAl catalysts. Ni2+ ions first substituted a
part of the Mg2+ sites in the Mg–Al hydrotalcite-like com-
pounds, then incorporated in the rock-salt type Mg–Ni–O
solid solutions in the mixed oxide after the decomposition,
and reduced to be used as the catalysts. The dispersion of Ni
was thus repeatedly enhanced during the spc preparation, re-
sulting in the highly dispersed and stable Ni metal particles
after the reduction. The activity of spc-Ni/MgAl catalyst was
the highest at the ratio of Mg/Al of 1/3. The reducibility of
Ni2+ was moderately controlled by the Al3+ incorporation
into the Mg–Ni–O solid solutions. In the partial oxidation
[9] P. Pantu, K. Kim, G.R. Gavalas, Appl. Catal. A 193 (2000) 203.
[10] P.M. Torniainen, X. Chu, L.D. Schmidt, J. Catal. 146 (1994) 1.
[11] T. Ashcroft, A.K. Cheetham, J.S. Foord, M.L.H. Green, C.P. Grey, A.J.
Murrell, P.D.F. Vernon, Nature 344 (1990) 319.
[12] T. Hayakawa, H. Harihara, A.G. Andersen, A.P.E. York, K. Suzuki, H.
Yasuda, K. Takehira, Angew. Chem., Int. Ed. Engl. 35 (1996) 192.
[13] A.G. Shiozaki, R. Andersen, T. Hayakawa, S. Hamakawa, K. Suzuki,
M. Shimizu, K. Takehira, J. Chem. Soc., Faraday Trans. 93 (1997)
3225.
[14] T. Hayakawa, S. Suzuki, S. Hamakawa, K. Suzuki, T. Shishido, K.
Takehira, Appl. Catal. A 183 (1999) 273.
[15] K. Takehira, T. Shishido, M. Kondo, J. Catal. 207 (2002) 307.
[16] F. Cavani, F. Trifiro, A. Vaccari, Catal. Today 11 (1991) 173.
[17] UK Patent 1,442,172, 1973, to BASF AG.
[18] F. Basile, L. Basini, M. D’Amore, G. Fornasari, A. Guarinoni, D. Mat-
teuzzi, G. Del Piero, F. Trifiro, A. Vaccari, J. Catal. 173 (1998) 247.
[19] L. Basini, A. Guarioni, A. Aragano, J. Catal. 190 (2000) 284.
[20] T. Shishido, M. Sukenobu, H. Morioka, M. Kondo, Y. Wang, K. Ta-
kaki, K. Takehira, Appl. Catal. A 223 (2002) 35.
of CH4, spc-Ni0.5/Mg2.5Al afforded enough high CH4 con-
−1
version even at the high space velocity (9×105 ml h−1 g ),
cat
exceeding the value obtained over 1wt%Rh/MgO. Ni species
on spc-Ni0.5/Mg2.5Al catalysts were stable even under the
presence of O2, while Ni catalysts prepared by the con-
ventional impregnation quickly lost activity due to the sur-
face oxidation of Ni particles. Moreover, a heat accumu-
lation during the CH4 oxidation was the lowest over the
spc-Ni0.5/Mg2.5Al catalyst among the catalysts tested. This
clearly suggests that the heat of exothermic CH4 combustion
to H2O and CO2 could be quickly consumed by the follow-
ing endothermic CH4 reforming by H2O and CO2 over spc-
Ni0.5/Mg2.5Al. Actually spc-Ni0.5/Mg2.5Al showed a high
and stable activity for the autothermal reforming of CH4 un-
der the copresence of O2 and H2O. Thus, spc-Ni0.5/Mg2.5Al
catalyst is a hopeful candidate for the autothermal reforming
of CH4 which can feed H2 to fuel cell economically.
[21] P. Shishido, T. Wang, T. Kosaka, K. Takehira, Chem. Lett. (2002) 752.
[22] T. Shishido, M. Sukenobu, H. Morioka, R. Furukawa, H. Shirahase, K.
Takehira, Catal. Lett. 73 (2001) 21.
[23] A.I. Tsyganok, K. Suzuki, S. Hamakawa, K. Takehira, T. Hayakawa,
Chem. Lett. (2001) 24.
[24] A.I. Tsyganok, K. Suzuki, S. Hamakawa, K. Takehira, T. Hayakawa,
Catal. Lett. 77 (2001) 75.
[25] A.I. Tsyganok, T. Tsunoda, K. Suzuki, S. Hamakawa, K. Takehira, T.
Hayakawa, J. Catal. 213 (2003) 191.
[26] K. Takehira, Catal. Surv. Jpn. 6 (2002) 19.
[27] M. Miyata, A. Okada, Clays Clay Miner. 25 (1977) 14.
[28] G. Fornasari, M. Gazzano, D. Matteuzzi, F. Trifiro, A. Vaccari, Appl.
Clay Sci. 10 (1995) 69.
[29] J.H. Ross, in: G.C. Bond, G. Webb (Eds.), Specialist Periodical Re-
ports, Vol. 7, Royal Society Chemistry, London, 1985, p. 1, and refer-
ences therein.
[30] R.D. Shannon, Acta Crystallogr. A 32 (1876) 751.
[31] U. Olsbye, D. Akpriaye, E. Rytter, M. Ronnekleiv, E. Tangstad, Appl.
Catal. A 224 (2002) 39.
[32] F. Cavani, F. Trifiro, A. Vaccari, Catal. Today 11 (1991) 173.
[33] A. Parmaliana, F. Arena, F. Frusteri, N. Giordano, J. Chem. Soc., Fara-
day Trans. 86 (1990) 2663.
[34] F. Arena, B.A. Horrell, D.L. Cocke, A. Parmaliana, N. Giordano,
J. Catal. 132 (1991) 58.
Acknowledgments
The authors sincerely thank the Hiroshima Industrial
Technology Organization for financial support.
[35] A. Parmaliana, F. Arena, F. Frusteri, S. Coluccia, L. Marchese, G.L.
Martra, A.L. Chuvilin, J. Catal. 141 (1993) 34.
[36] F. Arena, F. Frusteri, A. Parmaliana, L. Plyasova, A.N. Shmakov,
J. Chem. Soc., Faraday Trans. 92 (1996) 469.
References
[37] K. Tomishige, K. Fujimoto, Catal. Surv. Jpn. 2 (1998) 3.
[38] K. Tomishige, Y. Chen, K. Fujimoto, J. Catal. 181 (1991) 91.
[39] Y.-G. Chen, K. Tomishige, K. Yokoyama, K. Fujimoto, J. Catal. 184
(1999) 479.
[40] G.A. Somorjai, Introduction to Surface Chemistry and Catalysis,
Wiley–Interscience, New York, 1994.
[1] M.A. Pena, J.P. Gomez, J.L.G. Fierro, Appl. Catal. A 144 (1996) 7.
[2] J.N. Armor, Appl. Catal. A 176 (1999) 159.
[3] J.R. Rostrup-Nielsen, Catal. Today 71 (2002) 243.
[4] E. Ruckenstein, H.Y. Wang, Appl. Catal. A 198 (2000) 33.
[5] K. Nakagawa, N. Ikenaga, T. Kobayashi, T. Suzuki, Catal. Today 64
(2001) 31.