CHEMISORBED ATOMS AND MOLECULES OF REACTANTS AS ACTIVE SITES
471
3. Styrov, V.V., Kinet. Katal., 1968, vol. 9, no. 1, p. 124.
4. Grankin, V.P., Styrov, V.V., and Tyurin, Yu.I., Kinet.
Katal., 1983, vol. 24, no. 1, p. 141.
the Eley–Rideal collisional mechanism are negligible
in this case, and the reactions in the chemisorbed layer
(Langmuir–Hinshelwood adsorption mechanism) do
not make any considerable contribution to the reaction
rate. Depending on the concentration of active gas spe-
cies, temperature, and the nature of the catalyst, the rate
of these reactions is limited either by the capture of inci-
dent gas species with the formation of precursor species
or by the recombination of precursor species. The partic-
ipation of precursor species in the heterogeneous reac-
tion is most obvious in the case of “high” concentrations
of these species in the gas medium (n ꢃ 1014 cm–3).
These results were obtained by independent methods.
5. Grankin, V.P. and Tyurin, Yu.I., Kinet. Katal., 1996,
vol. 37, no. 4, p. 608.
6. Kharlamov, V.F., Khim. Fiz., 1994, vol. 13, no. 6, p. 83.
7. Kharlamov, V.F., Rekombinatsiya atomov na poverkh-
nosti tverdykh tel i soputstvuyushchie effekty (Recombi-
nation of Atoms on Solid Surface and Accompanying
Effects), Tomsk: Tomsk. Gos. Univ., 1994.
8. Kharlamov, V.F., Anufriev, K.M., Krutovskii, E.P., et al.,
Pis’ma Zh. Tekh. Fiz., 1998, vol. 24, no. 5, p. 23.
9. Kharlamov, V.F. and Anufriev, K.M., Pis’ma Zh. Tekh.
Fiz., 1999, vol. 25, no. 15, p. 27.
10. Styrov, V.V., Yagnova, L.I., and Izmailov, Sh.L., Kinet.
Katal., 1975, vol. 16, no. 3, p. 705.
For “low” concentrations of hydrogen atoms in the
gas medium (n ꢀ 1013 cm–3), the concentration of
chemisorbed hydrogen atoms and the rate of the heter-
11. Kharlamov, V.F., Khim. Fiz., 1991, vol. 10, no. 8,
ogeneous reaction H + H
H2 vary with time in the
p. 1084.
same way. This symbasis is not explained by the partic-
ipation of chemisorbed H atoms in the reaction. It is due
to the fact that chemisorbed monohydrogen alters the
state of the surface, increasing its catalytic activity. This
increase probably arises from the stabilization of result-
ing hydrogen molecules through energy transfer taking
place during the reaction according to the scheme
12. Kharlamov, V.F., Zh. Fiz. Khim., 1997, vol. 71, no. 4,
p. 678.
13. Kharlamov, V.F. and Rogozhina, T.S., Zh. Fiz. Khim.,
2003, vol. 77, no. 4, p. 632.
14. Kharlamov, V.F., Rogozhina, T.S., Barmin, A.V., et al.,
Pis’ma Zh. Tekh. Fiz., 2002, vol. 28, no. 13, p. 67.
15. Makushev, I.A., Barmin, A.V., Kharlamov, V.F., et al.,
Prib. Tekh. Eksp., 2003, no. 1, p. 134.
16. Kharlamov, V.F., Makushev, I.A., Barmin, A.V., et al.,
Pis’ma Zh. Tekh. Fiz., 2003, vol. 29, no. 7, p. 87.
17. Kharlamov, V.F., Poverkhnost, 1993, no. 11, p. 122.
HZ + HZ + (HZ)
H2 + 2Z + (HZ). This is accom-
panied by a relaxation of the vibrational energy of the
forming H–H bond in the H2 molecule through the
excitation of the (HZ) bond. The similar enhancing
effect of CO and O chemisorption on the catalytic activ-
ity of zinc sulfide surface in the heterogeneous reaction
18. Anufriev, K.M., Kharlamov, V.F., and Razumov, A.V.,
Prib. Tekh. Eksp., 2000, no. 1, p. 152.
CO + O
CO2 is due to the increase in capture cross
19. Callear, A.B. and Lambert, J.D., in Comprehensive
Chemical Kinetics, vol. 4: The Formation and Decay of
Excited Species, Bamford, C. and Tipper, C., Eds.,
Amsterdam: Elsevier, 1969.
section for the particles reacting on the surface and
passing into the precursor state according to the scheme
R + Z + (RZ)
RZ + (RZ). The most likely cause for
the stabilization of surface-captured species is the con-
version of vibrational energy of the forming bond RZ
into the energy of bending vibrations of the (RZ) bond.
20. Zaitsev, V.V., Opt. Spektrosk., 1992, vol. 72, no. 4,
p. 859.
21. Boreskov, G.K., Kataliz: voprosy teorii i praktiki (The-
ory and Practice of Catalysis), Novosibirsk: Nauka,
1987.
Metals (Cu and Pt) show a higher catalytic activity
in the H + H
H2 reaction than nonmetals (ZnS and
CaO) [2, 3] (see Eq. (3)). This is primarily due to the
difference in capture cross section for hydrogen atoms
passing into the precursor state. According to theory
[29], the larger values of σ for metals may be due to the
active participation of conduction electrons in energy
removal stabilizing precursor H atoms on the surface.
22. Izmailov, Sh.L. and Kharlamov, V.F., Kinet. Katal.,
1982, vol. 23, no. 5, p. 1179.
23. Kisliuk, P.J., J. Phys. Chem. Soc., 1957, vol. 3, p. 95;
1958, vol. 5, p. 78.
24. Ptushinskii, Yu.G. and Chuikov, B.A., Poverkhnost,
1992, no. 9, p. 5.
25. Matsushima, T., Almy, D.B., and White, J.M., Surf. Sci.,
1977, vol. 67, no. 1, pp. 89, 122.
ACKNOWLEDGMENTS
26. Weinberg, W.H., Comrie, C.M., and Lambert, R.M.,
The author is grateful to T.S. Rogozhina,A.V. Barmin,
and I.A. Makushev for their assistance in this study.
J. Catal., 1976, vol. 41, no. 3, p. 489.
27. Kiperman, S.L., Gaidai, N.A., Nekrasov, N.V., et al.,
Chem. Eng. Sci., 1999, no. 54, p. 4305.
REFERENCES
28. Kiperman, S.L. and Gaidai, N.A., Kinet. Katal., 1999,
vol. 40, no. 5, p. 705.
1. Krylov, O.V. and Matyshak, V.A., Promezhutochnye
soedineniya v geterogennom katalize (Intermediates in
Heterogeneous Catalysis), Moscow: Nauka, 1995.
29. Kozhushner, M.A., Kolebatel’naya relaksatsiya adsor-
birovannykh molekul (Vibrational Relaxation of
Adsorbed Molecules), Moscow: Nauka, 1982.
2. Lavrenko, V.A., Rekombinatsiya atomov vodoroda na
poverkhnosti tverdykh tel (Recombination of Hydrogen 30. Kharlamov, V.F. and Rogozhina, T.S., Kondens. Sredy
Atoms on Solid Surfaces), Kiev: Naukova Dumka, 1973.
Mezhfazn. Granitsy, 2002, vol. 4, no. 2, p. 162.
KINETICS AND CATALYSIS Vol. 46 No. 4 2005