Full Paper
8
4
3
2
1
1
1
5
.7 Hz), 6.01 (1H, br. S), 4.46 (2H, t, J = 6.9 Hz), 4.17–4.03 (1H, m),
.00–3.97 (1H, m), 3.89–3.78 (m, 1H), 3.82 (3H, s), 3.71–3.63 (1H, m),
.59–3.42 (2H, m), 3.28–3.20 (1H, m), 3.06–2.95 (1H, m), 2.64 (6H, s),
.34–2.25 (2H, m), 2.20–2.05 (2H, m), 1.97–1.78 (2H, m), 1.40 (6H, s),
.30–1.18 (2H, m); δ (75 MHz, CDCl ) 159.5, 158.2, 156.9 (2C), 148.7,
[7] M. R. Iesce, F. Cermola, in Handbook of Organic Photochemistry and
Photobiology, 3rd ed., (Eds.: A. Griesbeck, M. Oelgemöller, F. Ghetti), CRC
Press: Boca Raton, FL, 2012, p. 727–764.
[
8] For selected reviews about Schenck-ene reactions: a) P. Bayer, R. Pérez-
Ruiz, A. Jacobi von Wangelin, ChemPhotoChem 2018, 2, 559–570; b) M. N.
Alberti, M. Orfanopoulos, Chem. Eur. J. 2010, 16, 9414–9421; c) M. N.
Alberti, M. Orfanopoulos, Synlett 2010, 999–1026; d) A. Greer, Acc. Chem.
Res. 2006, 39, 797–804; e) E. L. Clennan, Tetrahedron 2000, 56, 9151–
9179.
C
3
47.5, 145.7, 145.3, 144.2, 141.3, 131.8 (2C), 131.6, 129.4 (2C), 127.5,
26.1, 125.8, 122.1, 121.1, 118.8, 115.4 (2C), 100.7, 85.8 (2C), 64.4,
9.8, 56.3, 55.0, 47.2, 43.8, 32.5, 29.9, 28.0, 25.8, 20.2, 17.3 (2C), 16.2
2C). IR (ATR)/cm– 3232 (υ, O-H), 2930 (υ, C-H), 1526 (υ, C-H), 1175
1
[9] For selected recent examples, see: a) L. Péault, P. Nun, E. Le Grognec, V.
Coeffard, Chem. Commun. 2019, 55, 7398–7401; b) H. Umihara, T. Yo-
shino, J. Shimokawa, M. Kitamura, T. Fukuyama, Angew. Chem. Int. Ed.
(
(
υ, C-O), 993 (υ, C=C), 525 (υ, C-I); HRMS (ESI) Calcd for
–
C H N O F I B [M – H] : 995.1614 found: 995.1578.
42 43 7 3 2 2
2016, 55, 6915–6918; Angew. Chem. 2016, 128, 7029; c) G. Tong, Z. Liu,
P. Li, Org. Lett. 2014, 16, 2288–2291; d) K. M. Jones, T. Hillringhaus, M.
Klussmann, Tetrahedron Lett. 2013, 54, 3294–3297; e) T. R. Hoye, C. S.
Jeffrey, D. P. Nelson, Org. Lett. 2010, 12, 52–55.
Acknowledgments
This work was supported by The Région Pays de la Loire
[10] For selected recent examples, see: a) L. Marin, G. Force, R. Guillot,
V. Gandon, E. Schulz, D. Lebœuf, Chem. Commun. 2019, 55, 5443–5446;
b) G. I. Ioannou, T. Montagnon, D. Kalaitzakis, S. A. Pergantis, G. Vassiliko-
giannakis, ChemPhotoChem 2018, 2, 860–864; c) M. Triantafyllakis,
K. Sfakianaki, D. Kalaitzakis, G. Vassilikogiannakis, Org. Lett. 2018, 20,
3631–3634; d) D. Kalaitzakis, M. Triantafyllakis, G. I. Ioannou, G. Vassiliko-
giannakis, Angew. Chem. Int. Ed. 2017, 56, 4020–4023; Angew. Chem.
(
NANO2 project) which financed a PhD grant for JF. We also
thank University of Nantes and CNRS for financial support.
Keywords: Asymmetric catalysis · Energy transfer ·
Photooxidation · Singlet oxygen · Synthetic methods
2017, 129, 4078; e) T. Montagnon, D. Kalaitzakis, M. Sofiadis, G. Vassiliko-
giannakis, Org. Biomol. Chem. 2016, 14, 8636–8640.
[
[
11] A. A. Ghogare, A. Greer, Chem. Rev. 2016, 116, 9994–10034.
12] a) L. Weber, I. Imiolczyk, G. Haufe, D. Rehorek, H. Hennig, J. Chem. Soc.,
Chem. Commun. 1992, 301–303; b) Y. Kuroda, T. Sera, H. Ogoshi, J. Am.
Chem. Soc. 1991, 113, 2793–2794.
13] D. J. Walaszek, K. Rybicka-Jasińska, S. Smoleń, M. Karczewski, D. Gryko,
Adv. Synth. Catal. 2015, 357, 2061–2070.
14] M. Lian, Z. Li, Y. Cai, Q. Meng, Z. Gao, Chem. Asian J. 2012, 7, 2019–2023.
15] a) Y. Wang, Z. Zheng, M. Lian, H. Yin, J. Zhao, Q. Meng, Z. Gao, Green
Chem. 2016, 18, 5493–5499; b) Y. Wang, H. Yin, X. Tang, Y. Wu, Q. Meng,
Z. Gao, J. Org. Chem. 2016, 81, 7042–7050; c) F. Yang, J. Zhao, X. Tang, Y.
Wu, Z. Yu, Q. Meng, Adv. Synth. Catal. 2019, 361, 1673–1677; d) X.-F. Tang,
S.-H. Feng, Y.-K. Wang, F. Yang, Z.-H. Zheng, J.-N. Zhao, Y.-F. Wu, H. Yin,
G.-Z. Liu, Q.-W. Meng, Tetrahedron 2018, 74, 3624–3633.
[
1] For selected reviews, see: a) T. P. Nicholls, D. Leonori, A. C. Bissember,
Nat. Prod. Rep. 2016, 33, 1248–1254; b) K. L. Skubi, T. R. Blum, T. P. Yoon,
Chem. Rev. 2016, 116, 10035–10074; c) M. D. Kärkäs, J. A. Porco, C. R. J.
Stephenson, Chem. Rev. 2016, 116, 9683–9747; d) M. H. Shaw, J. Twilton,
D. W. C. MacMillan, J. Org. Chem. 2016, 81, 6898–6926; e) T. Bach, J. P.
Hehn, Angew. Chem. Int. Ed. 2011, 50, 1000–1045; Angew. Chem. 2011,
[
[
[
1
23, 1032.
[
2] a) E. M. Sherbrook, T. P. Yoon. Asymmetric Catalysis of Triplet State Photo-
reactions. In Specialist Periodical Reports: Photochemistry (Eds.: A. Albini,
S. Protti); Royal Society of Chemistry: Croydon, 2019; b) Y.-Q. Zou, F. M.
Hörmann, T. Bach, Chem. Soc. Rev. 2018, 47, 278–290; c) R. Brimioulle, D.
Lenhart, M. M. Maturi, T. Bach, Angew. Chem. Int. Ed. 2015, 54, 3872–
3
890; Angew. Chem. 2015, 127, 3944; d) E. Meggers, Chem. Commun.
015, 51, 3290–3301.
3] a) Q.-Q. Zhou, Y.-Q. Zou, L.-Q. Lu, W.-J. Xiao, Angew. Chem. Int. Ed. 2019,
8, 1586–1604; Angew. Chem. 2019, 131, 1600; b) F. Strieth-Kalthoff, M. J.
James, M. Teders, L. Pitzer, F. Glorius, Chem. Soc. Rev. 2018, 47, 7190–
202.
[
16] W. Ding, L.-Q. Lu, Q.-Q. Zhou, Y. Wei, J.-R. Chen, W.-J. Xiao, J. Am. Chem.
Soc. 2017, 139, 63–66.
17] a) A. G. Griesbeck, M. A. Miranda, J. Uhlig, Photochem. Photobiol. Sci.
2
[
[
[
5
2011, 10, 1431–1435; b) A. Joy, R. J. Robbins, K. Pitchumani, V. Ramamur-
thy, Tetrahedron Lett. 1997, 38, 8825–8828.
7
[
[
[
18] S. Callaghan, M. O. Senge, Photochem. Photobiol. Sci. 2018, 17, 1490–
4] For recent examples of asymmetric [2+2] photocycloadditions, see: a)
M. E. Daub, H. Jung, B. J. Lee, J. Won, M.-H. Baik, T. P. Yoon, J. Am. Chem.
Soc. 2019, DOI https://doi.org/10.1021/jacs.9b04643; b) F. M. Hörmann,
T. S. Chung, E. Rodriguez, M. Jakob, T. Bach, Angew. Chem. Int. Ed. 2018,
1
514.
19] E. Lemp, G. Günther, R. Castro, M. Curitol, A. L. Zanocco, J. Photochem.
Photobiol. A 2005, 175, 146–153.
20] G. Bartoli, M. Bosco, A. Carlone, A. Cavalli, M. Locatelli, A. Mazzanti, P.
Ricci, L. Sambri, P. Melchiorre, Angew. Chem. Int. Ed. 2006, 45, 4966–4970;
Angew. Chem. 2006, 118, 5077.
5
7, 827–831; Angew. Chem. 2018, 130, 835; c) S. Poplata, T. Bach, J. Am.
Chem. Soc. 2018, 140, 3228–3231; d) K. L. Skubi, J. B. Kidd, H. Jung, I. A.
Guzei, M.-H. Baik, T. P. Yoon, J. Am. Chem. Soc. 2017, 139, 17186–17192;
e) Z. D. Miller, B. J. Lee, T. P. Yoon, Angew. Chem. Int. Ed. 2017, 56, 11891–
[
21] a) A. Mauger, J. Farjon, P. Nun, V. Coeffard, Chem. Eur. J. 2018, 24, 4790–
4
793; b) L. Huang, J. Zhao, S. Guo, C. Zhang, J. Ma, J. Org. Chem. 2013,
1
1895; Angew. Chem. 2017, 129, 12053; f) X. Huang, T. R. Quinn, K.
Harms, R. D. Webster, L. Zhang, O. Wiest, E. Meggers, J. Am. Chem. Soc.
017, 139, 9120–9123; g) A. Tröster, R. Alonso, A. Bauer, T. Bach, J. Am.
7
8, 5627–5637.
[
[
22] For similar mechanism, see: Y. Wang, T. Xiong, Q. Meng, Tetrahedron
015, 71, 85–90.
2
2
Chem. Soc. 2016, 138, 7808–7811; h) F. Mayr, R. Brimioulle, T. Bach, J.
Org. Chem. 2016, 81, 6965–6971; i) N. Vallavoju, S. Selvakumar, S. Jock-
usch, M. P. Sibi, J. Sivaguru, Angew. Chem. Int. Ed. 2014, 53, 5604–5608;
Angew. Chem. 2014, 126, 5710; j) R. Alonso, T. Bach, Angew. Chem. Int.
Ed. 2014, 53, 4368–4371; Angew. Chem. 2014, 126, 4457; k) H. Huo, X.
Shen, C. Wang, L. Zhang, P. Röse, L.-A. Chen, K. Harms, M. Marsch, G. Hilt,
E. Meggers, Nature 2014, 515, 100–103; l) R. Brimioulle, T. Bach, Angew.
Chem. Int. Ed. 2014, 53, 12921–12924; Angew. Chem. 2014, 126, 13135.
5] a) I. Pibiri, S. Buscemi, A. Palumbo Piccionello, A. Pace, ChemPhotoChem
23] E. Balmond, B. K. Tautges, A. L. Faulkner, V. W. Or, B. M. Hodur, J. T. Shaw,
A. Y. Louie, Org. Lett. 2016, 81, 8744–8758.
24] I. D. Jurberg, Chem. Eur. J. 2017, 23, 9716–9720.
25] E. C. Aka, M. C. Nongbe, T. Ekou, L. Ekou, V. Coeffard, F.-X. Felpin, J.
Environ. Sci. 2019, 84, 174–183.
26] A. M. R. Smith, D. Billen, K. K. Hii, Chem. Commun. 2009, 3925–3927.
27] D. Steinhilber, T. Rossow, S. Wedepohl, F. Paulus, S. Seiffert, R. Haag,
Angew. Chem. Int. Ed. 2013, 52, 13538–13543; Angew. Chem. 2013, 125,
[
[
[
[
[
[
1
3780.
28] M. Yuan, X. Yin, H. Zheng, C. Ouyang, Z. Zuo, H. Liu, Y. Li, Chem. Asian J.
009, 4, 707–713.
2018, 2, 535–547; b) S. Nonell, C. Flors (Eds.), Singlet Oxygen: Applications
[
in Biosciences and Nanosciences, The Royal Society Of Chemistry, 2016.
6] For selected reviews about heteroatom oxidation, see: a) N. Sawwan, A.
Greer, Chem. Rev. 2007, 107, 3247–3285; b) E. L. Clennan, Acc. Chem. Res.
2
2001, 34, 875–884.
Received: July 9, 2019
Eur. J. Org. Chem. 2019, 6352–6358
www.eurjoc.org
6358
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim