In,12 and Cu13 catalysts was developed by Carreira et al.,
Shibasaki et al., and Sawamura et al., respectively. Here we
report a new ruthenium-catalyzed alkynylation reaction by
use of chiral Ru-phebox complexes (Figure 1).
Table 1. Asymmetric Alkynylation of Benzaldehyde 6a with
Phenylacetylene 5a Catalyzed by Ru-Bis(oxazolinyl)phenyl
Complexes 1-4a
entry
cat.
base
yieldb (%)
eec (%)
1
2
3
4
5
6
7
8
1
1
2
3
4
4
1
1
1
1
1
1
1
-
0
75
57
74
74
71
69
73
73
72
70
89
83
-
92
60
93
92
92
94
92
90
82
72
93
93
NaOAc
NaOAc
NaOAc
NaOAc
-
PhCO2Na
LiOAc
KOAc
NaOMe
K2CO3
NaOAc
NaOAc
Figure 1. Chiral Ru-bis(oxazolinyl)phenyl complexes.
9
10
11
12d
13e
The addition of phenylacetylene 5a to benzaldehyde 6a
was investigated using the Ru-phebox complex 16b as a
catalyst (Table 1). Initially, the addition reaction under
heating at 60 °C for 96 h in 2-propanol did not proceed (entry
1). However, addition of NaOAc (10 mol %) promoted the
reaction to give the corresponding propargylic alcohol 7aa
in 75% yield and 92% ee (entry 2). The substituents on the
ligand affected the outcome of the addition reaction. Thus,
the use of isopropyl catalyst 2 decreased both the yield and
the enantioselectivity (entry 3). Next, we utilized mononuclear
complexes 3 and 4 as catalysts. The aqua complex 3 and the
acetate complex 4 with NaOAc afforded the propargylic alcohol
a Reaction conditions: 5a (2 mmol), 6a (1 mmol), Ru-phebox (5 mol
% Ru), base (0.1 mmol), 2-propanol (5 mL), 60 °C, 96 h. b Isolated yield.
c Determined by HPLC. d 5a (4 mmol). e 5a (4 mmol), 60 °C, 48 h.
7aa with excellent enantioselectivity of up to 93% ee (entries
4 and 5). Notably, 4 did not require extra NaOAc to give 7aa
in a similar yield and enantioselectivity (entry 6). Other
carboxylate reagents were also effective for the addition reaction
to produce 7aa with up to 94% ee (entries 7-11). In contrast
to the carboxylate derivatives, other bases, such as NaOMe and
K2CO3, decreased the enantioselectivity. The use of an excess
amount (4 equiv) of the alkyne increased the yield of 7aa to
89% for 96 h and 83% for 48 h (entries 12 and 13).14 We also
verified that the enantioselectivity of 7aa was not changed during
the catalytic reaction (Figure S1 in Supporting Information).
The use of THF showed yields similar to that of 2-pro-
panol, but the enantioselectivity was slightly decreased (Table
2, entry 1). In this case, the formation of unidentified
byproducts was observed. The reaction in 1,2-dichloroethane
was not efficient (entry 2). Use of toluene afforded 7aa in
good enantioselectivity but moderate yield (entry 3). To
elucidate the solvent effect, the reaction was monitored by
1H NMR spectroscopy in both toluene-d8 and 2-propanol-
d8. In toluene-d8, decay of 7aa was observed after reaching
(7) (a) Trost, B. M.; Weiss, A. H. AdV. Synth. Catal. 2009, 351, 963.
(b) Pu, L. Tetrahedron 2003, 59, 9873. (c) Cozzi, P. G.; Hilgraf, R.;
Zimmermann, N. Eur. J. Org. Chem. 2004, 4095. (d) Lu, G.; Li, Y.-M.;
Li, X.-S.; Chan, A. S. C. Coord. Chem. ReV. 2005, 249, 1736. (e) Tyrrell,
E. Curr. Org. Chem. 2009, 13, 1540.
(8) Niwa, S.; Soai, K. J. Chem. Soc., Perkin Trans. 1 1990, 937.
(9) Selected examples; (a) Corey, E. J.; Cimprich, K. A. J. Am. Chem.
Soc. 1994, 116, 3151. (b) Frantz, D. E.; Fa¨ssler, R.; Carreira, E. M. J. Am.
Chem. Soc. 2000, 122, 1806. (c) Li, X.; Lu, G.; Kwok, W. H.; Chan, A. S. C.
J. Am. Chem. Soc. 2002, 124, 12636. (d) Gao, G.; Xie, R.-G.; Pu, L. Proc.
Natl. Acad. Sci. U.S.A. 2004, 101, 5417. (e) Trost, B. M.; Weiss, A. H.;
von Wangelin, A. J. J. Am. Chem. Soc. 2006, 128, 8. (f) Wolf, C.; Liu, S.
J. Am. Chem. Soc. 2006, 128, 10996. (g) Gao, G.; Wang, Q.; Yu, X.-Q.;
Xie, R.-G.; Pu, L. Angew. Chem., Int. Ed. 2006, 118, 128. (h) Trost, B. M.;
Chan, V. S.; Yamamoto, D. J. Am. Chem. Soc. 2010, 132, 5186.
(10) Examples of achiral catalysts; (a) Tzalis, D.; Knochel, P. Angew.
Chem., Int. Ed. 1999, 38, 1463. (b) Babler, J. H.; Liptak, V. P.; Phan, N.
J. Org. Chem. 1996, 61, 416. (c) Miyamoto, H.; Yasaka, S.; Tanaka, K.
Bull. Chem. Soc. Jpn. 2001, 74, 185. (d) Ishikawa, T.; Mizuta, T.; Hagiwara,
K.; Aikawa, T.; Kudo, T.; Saito, S. J. Org. Chem. 2003, 68, 3702. (e) Takita,
R.; Fukuta, Y.; Tsuji, R.; Ohshima, T.; Shibasaki, M. Org. Lett. 2005, 7,
1363. (f) Sakai, N.; Kanada, R.; Hirasawa, M.; Konakahara, T. Tetrahedron
2005, 61, 9298. (g) Yao, X.; Li, C.-J. Org. Lett. 2005, 7, 4395. (h) Dhondi,
P. K.; Chisholm, J. D. Org. Lett. 2006, 8, 67. (i) Jiang, B.; Si, Y.-G.
Tetrahedron Lett. 2002, 43, 8323.
(14) Typical procedure for 7aa (Table 1, entry 13): To a mixture of 1
(31 mg, 0.025 mmol Ru) and NaOAc (8.2 mg, 0.10 mmol) in iPrOH (5
mL), 5a (408 mg, 4.0 mmol) and 6a (106 mg, 1.0 mmol) were added at
room temperature, and the mixture was stirred at 60 °C for 48 h. Then, the
reaction mixture was concentrated under reduced pressure. The crude
product was purified by silica gel column chromatography with hexane/
ethyl acetate (10:1) as eluent to give 7aa (173 mg, 0.83 mmol) in 83%
(11) (a) Anand, N. K.; Carreira, E. M. J. Am. Chem. Soc. 2001, 123,
9687. (b) Jiang, B.; Chen, Z; Xiong, W. Chem. Commun. 2002, 1524. (c)
Chen, Z.; Xiong, W.; Jiang, B. Chem. Commun. 2002, 2098. (d) Yamashita,
M.; Yamada, K.-i.; Tomioka, K. AdV. Synth. Catal 2005, 347, 1649. (e)
Emmerson, D. P. G.; Hems, W. P.; Davis, B. G. Org. Lett. 2006, 8, 207.
(12) (a) Takita, R.; Yakura, K.; Ohshima, T.; Shibasaki, M. J. Am. Chem.
Soc. 2005, 127, 13760. (b) Harada, S.; Takita, R.; Ohshima, T.; Matsunaga,
S.; Shibasaki, M. Chem. Commun. 2007, 948.
1
yield and 93% ee as determined by HPLC analysis. H NMR (300 MHz,
CDCl3): δ 2.33 (d, J ) 5.9 Hz, 1H, OH), 5.71 (d, J ) 5.9 Hz, 1H, CH),
7.28-7.51 (m, 8H, CH), 7.68-7.64 (m, 2H, CH). 13C NMR (75 MHz,
CDCl3): δ 65.0, 86.5, 88.6, 122.2, 126.5, 128.0, 128.2, 128.3, 128.4, 131.5,
140.3. IR (KBr): ν 3363, 3061, 3031, 2228 cm-1. HRMS: m/z 208.0902
[M+], 208.0888 [C15H12O]; chiral HPLC (Daicel CHIRALCEL OD, hexane:
iPrOH ) 80:20, 254 nm): tr ) 8.2 (major), 12.1 (minor) min, 93% ee;
(13) (a) Asano, Y.; Hara, K.; Ito, H.; Sawamura, M. Org. Lett. 2007, 9,
3901. (b) Asano, Y.; Ito, H.; Hara, K.; Sawamura, M. Organometallics
2008, 27, 5984.
9a
20
23
[R]D ) +7.5 (c ) 1.0 in EtOH) {lit. [R]D ) +7.0 [c ) 1.0 in EtOH,
96% ee (R)]}.
Org. Lett., Vol. 12, No. 17, 2010
3861