10.1002/adsc.201901013
Advanced Synthesis & Catalysis
through a zwitterionic form[17] allows the production
of (E)-3, which was detected by 1H NMR.
[4] a) B. M. Trost, J. T. Masters, Chem. Soc. Rev. 2016, 45,
2212; b) Y. Zhou, Y. Zhang, J. Wang, Org. Biomol.
Chem. 2016, 14, 6638; c) H.-D. Xu, R.-W. Zhang, X. Li,
S. Huang, W. Tang, W.-H. Hu, Org. Lett. 2013, 15, 840;
d) S. Han, H.-S. Kim, M. Zhang, Y. Xia, S. Lee, Org.
Lett. 2019, 21, 5426, and references cited therein.
[5] a) R. Filler, E. J. Piasek, L. H. Mark, J. Org. Chem. 1961,
26, 2659; b) A. Funayama, T. Satoh, M. Miura, J. Am.
Chem. Soc. 2005, 127, 15354; c) A. Horita, H. Tsurugi,
A. Funayama, T. Satoh, M. Miura, Org. Lett. 2007, 9,
2231.
[6] a) X. Zhu, W. Deng, M.-F. Chiou, C. Ye, W. Jian, Y.
Zeng, Y. Jiao, L. Ge, Y. Li, X. Zhang, H. Bao, J. Am.
Chem. Soc. 2019, 141, 548; b) Y. Kawato, H. Ono, A.
Kubota, Y. Nagao, N. Morita, H. Egami, Y. Hamashima,
Chem. Eur. J. 2016, 22, 2127; c) B. Gockel, N. Krause,
Eur. J. Org. Chem. 2010, 311; d) A. S. K. Hashmi, T.
Häffner, M. Rudolph, F. Rominger, Eur. J. Org. Chem.
2011, 667; e) Z. Wu, A. V. R. Madduri, S. R.
Harutyunyan, A. J. Minnaard, Eur. J. Org. Chem. 2014,
575; f) C. Thongsornkleeb, R. L. Danheiser, J. Org.
Chem. 2005, 70, 2364; g) A. V. R. Madduri, A. J.
Minnaard, S. R. Harutyunyan, Org. Biomol. Chem. 2012,
10, 2878; h) B. S. Chinta, H. Sanapa, K. P. Vasikarla, B.
Baire, Org. Biomol. Chem. 2018, 16, 3947; i) Y. Zhang,
B. Yu, B. Gao, T. Zhang, H. Huang, Org. Lett. 2019, 21,
535; j) M. S. Hadfield, A.-L. Lee, Org. Lett. 2010, 12,
484; k) A. Heuer-Jungemann, R. G. McLaren, M. S.
Hadfield, A.-L. Lee, Tetrahedron 2011, 67, 1609; l) C.
Thongsornkleeb, W. Rabten, A. Bunrit, J. Tummatorn,
S. Ruchirawat, Tetrahedron Lett. 2012, 53, 6615.
[7] S.-i., Ikeda, D.-M. Cui, Y. Sato, J. Org. Chem. 1994, 59,
6877.
In summary, we have developed a rhodium(I)-
catalyzed regio- and stereoselective synthesis of 2-
hydroxymethyl-1,3-enynes from readily accessible
aryl-, alkyl-, and trimethylsilyl-substituted propiolic
acids and propargyl alcohols through decarboxylative
C–C bond formation. This research highlights the
employment of non-terminal alkynes for the coupling
reactions, which predominantly deliver a diversity of
(Z)-enynes. The subject of our ongoing studies will
focus on further elucidation of the Z-stereochemistry
and synthetic applications of this attractive approach.
Experimental Section
To an oven-dried sealed tube (20 mL) equipped with a
stirrer bar was added RhCl(PPh3)3 (13.9 mg, 0.015 mmol, 5
mol %), PPh3 (7.9 mg, 0.03 mmol, 10 mol %), K2CO3 (8.3
mg, 0.06 mmol, 20 mol %), phenylpropiolic acid 1a (43.8
mg, 0.3 mmol, 1.0 equiv.), and 1-(prop-1-yn-1-
yl)cyclobutan-1-ol 2a (49.6 mg, 0.45 mmol, 1.5 equiv.)
under ambient atmosphere. Dry toluene (1.5 mL, 0.2 M) was
then added. After the reaction mixture was stirred at room
temperature for 15 min, the resulting mixture was heated at
100 ℃ for 4 h. Upon completion, the reaction mixture was
concentrated under reduced pressure and the residue was
purified by silica gel chromatography (petroleum
ether/EtOAc) to obtain the desired product 3aa.
Acknowledgements
[8] a) B. M. Trost, M. C. McIntosh, Tetrahedron Lett. 1997,
38, 3207; b) B. M. Trost, J. L. Gunzner, T. Yasukata,
Tetrahedron Lett. 2001, 42, 3775.
[9] M. Nogami, K. Hirano, M. Kanai, C. Wang, T. Saito, K.
Miyamoto, A. Muranaka, M. Uchiyama, J. Am. Chem.
Soc. 2017, 139, 12358.
This work was supported by the Natural Science Foundation of
Shandong Province (ZR2019MB003), the Key Research and
Development Program of Shandong Province (2018GGX109010),
the Natural Science Foundation of China (21602256, 81671395),
the CAMS Innovation Fund for Medical Sciences (CIFMS, 2017-
I2M-2-004), the State Key Laboratory of Natural and Biomimetic
Drugs (K20170205), and the High-Level Project Cultivation
Program of TSMC (2018GCC16).
[10] For selected reviews, see: a) Y. Wei, P. Hu, M. Zhang,
W. Su, Chem. Rev. 2017, 117, 8864; b) J. D. Weaver,
A. Recio III, A. J. Grenning, J. A. Tunge, Chem. Rev.
2011, 111, 1846; c) Z.-L. Wang, Adv. Synth. Catal.
2013, 355, 2745; d) M. Rahman, A. Mukherjee, I. S.
Kovalev, D. S. Kopchuk, G. V. Zyryanov, M. V.
Tsurkan, A. Majee, B. C. Ranu, V. N. Charushin, O. N.
Chupakhin, S. Santra, Adv. Synth. Catal. 2019, 361,
2161.
[11] For selected examples, see: a) H. Feng, D. S. Ermolatev,
G. Song , E. V. Van der Eycken, Adv. Synth. Catal.
2012, 354, 505; b) K. Park, S. Lee, RSC Adv. 2013, 3,
14165; c) W. Jia, N. Jiao, Org. Lett. 2010, 12, 2000; c)
W.-K. Yuan, M.-H. Zhu, R.-S. Geng, G.-Y. Ren, L.-B.
Zhang, L.-R. Wen, M. Li, Org. Lett. 2019, 21, 1654; d)
D. L. Priebbenow, P. Becker, C. Bolm, Org. Lett. 2013,
15, 6155; e) G. C. E. Raja, F. M. Irudayanathan, H.-S.
Kim, J. Kim, S. Lee, J. Org. Chem. 2016, 81, 5244; f)
H. Feng, H. Jia, Z. Sun, J. Org. Chem. 2014, 79, 11812.
[12] a) H.-S. Li, Y. Xiong, G. Zhang, Adv. Synth. Catal.
2018, 360, 4246; b) H.-S. Li, G. Guo, R.-Z. Zhang, F.
Li, Org. Lett. 2018, 20, 5040.
References
[1] For selected examples, see: a) A. Rudi, M. Schleyer, Y.
Kashman, J. Nat. Prod. 2000, 63, 1434; b) H. Kim, H.
Lee, D. Lee, S. Kim, D. Kim, J. Am. Chem. Soc. 2007,
129, 2269; c) K. C. Nicolaou, W. M. Dai, Angew. Chem.,
Int. Ed. Engl. 1991, 30, 1387; d) I. H. Goldberg, Acc.
Chem. Res. 1991, 24, 191.
[2] a) N. Zein, A. M. Sinha, W. J. McGahren, G. A. Ellestad,
Science 1988, 240, 1198; b) S. L. Iverson, J. P. Uetrecht,
Chem. Res. Toxicol. 2001, 14, 175; c) P. Nussbaumer, I.
Leitner, K. Mraz, A. Stütz, J. Med. Chem. 1995, 38,
1831.
[3] a) G. Chen, L. Wang, D. W. Thompson, Y. Zhao, Org.
Lett. 2008, 10, 657; b) K. Campbell, C. J. Kuehl, M. J.
Ferguson, P. J. Stang, R. R. Tykwinski, J. Am. Chem.
Soc. 2002, 124, 7266; c) Y. Liu, M. Nishiura, Y. Wang,
Z. Hou, J. Am. Chem. Soc. 2006, 128, 5592; d) S. Saito;
Y. Yamamoto, Chem. Rev. 2000, 100, 2901.
5
This article is protected by copyright. All rights reserved.