Paper
Dalton Transactions
Synthesis of complex 6e
Topics in Organometallic Chemistry, ed. G. van Koten and D.
Milstein, Springer-Verlag, Berlin, Heidelberg, 2013;
(d) N. Selander and K. J. Szabó, Chem. Rev., 2011, 111,
2048; (e) Phosphorous(III) Ligands in Homogeneous Catalysis:
Design and Synthesis, ed. P. C. J. Kamer and P. W. N. M. van
Leeuwen, Wiley-VCH, Weinheim, Germany, 2012;
(f) B. Rybtchinski and D. Milstein, Angew. Chem., Int. Ed.,
1999, 38, 870; (g) M. E. van der Boom and D. Milstein,
Chem. Rev., 2003, 103, 1759.
3 For a recent review, see: (a) D. M. Roddick, Top. Organomet.
Chem., 2013, 40, 49; For examples of (PCP)Pd systems, see:
(b) J. L. Bolliger, O. Blacque and C. M. Frech, Angew. Chem.,
Int. Ed., 2007, 46, 6514; (c) R. Gerber, T. Fox and
To a solution of pincer-Pt–Cl complex 6a (0.213 mmol, 1.0
equiv.) in DCM (10 mL) was added AgOAc (0.320 mmol, 1.5
equiv.). The reaction mixture was stirred overnight, filtered
through a plug of silica gel and extracted into DCM (25 mL).
The organic layer was washed with water (2 × 25 mL), dried
over Na2SO4 and concentrated to give the pure product 6e.
General procedure for catalytic addition of diphenylphosphine
to chalcone
Catalyst 6e (25 μmol, 5 mol%) was added to a solution of
diphenylphosphine (0.5 mmol, 1.0 equiv.) in DCM (1 mL) and
stirred at RT followed by subsequent addition of chalcone 11
(0.5 mmol, 1.0 equiv.). Completion of the reaction was deter-
mined by the disappearance of the phosphorous signal attribu-
ted to diphenylphosphine (−40 ppm) in the 31P{1H} NMR
spectrum. Upon completion of the reaction, aq. H2O2 (0.1 mL,
31% v/v) was added to form the respective product. The vola-
tiles were removed under reduced pressure and the crude
product was directly loaded onto a silica gel column (3EA : 2n-
hexane) to afford the pure product. The data obtained is con-
sistent with the literature.7c
C. M. Frech, Chem.
–
Eur. J., 2010, 16, 6771;
(d) J. L. Bolliger, O. Blacque and C. M. Frech, Chem. – Eur.
J., 2008, 14, 7969; For examples of (PCP)Pt systems, see:
(e) J. J. Adams, A. Lau, N. Arulsamy and D. M. Roddick,
Inorg. Chem., 2007, 46, 11328; (f) D. Vuzman, E. Poverenov,
Y. Diskin-Posner, G. Leitus, L. J. W. Shimon and D. Milstein,
Dalton Trans., 2007, 5692; For examples of (PCP)Ir systems,
see: (g) J. J. Adams, N. Arulsamy and D. M. Roddick, Organo-
metallics, 2011, 30, 697; (h) I. Goettker-Schnetmann,
P. S. White and M. Brookhart, Organometallics, 2004, 23,
1766; (i) S. M. Kloek, D. M. Heinekey and K. I. Goldberg,
Organometallics, 2006, 25, 3007.
Computational methods
DFT calculations and NBO analyses were performed on com-
plexes 6a and 6c, which show distinct C–Pt bond lengths (see
above). The B3LYP functional was used in conjunction with
the SDD effective core potential basis set (for Pt) and the
6-31G* basis set (for the other atoms).10,11 This level of theory
is referred to here as B3LYP/[SDD(Pt),6-31G*(others)]. Calcu-
lations were performed using the Gaussian 09 software
package.12 NBO analyses were performed on DFT optimized
geometries using the NBO program version 3.1 implemented
in Gaussian 09.
4 B. J. Coe and S. J. Glenwright, Coord. Chem. Rev., 2011, 255,
1686.
5 Y.-X. Jia, B.-B. Li, Y. Li, S. A. Pullarkat, K. Xu, H. Hirao and
P. H. Leung, Organometallics, 2014, 33, 6053.
6 (a) P. H. Leung, Acc. Chem. Res., 2004, 37, 169;
(b) P. H. Leung, S. K. Loh, K. F. Mok, A. J. P. White and
D. J. Williams, J. Chem. Soc., Chem. Commun., 1996, 42,
591; (c) P. H. Leung, G. He, H. Lang, A. Liu, S. K. Loh,
S. Selvaratnam, K. F. Mok, A. J. P. White and D. J. Williams,
Tetrahedron, 2000, 56, 7.
7 (a) S. A. Pullarkat and P.-H. Leung, Top. Organomet. Chem.,
2013, 43, 145; (b) Y. Huang, R. J. Chew, Y. Li, S. A. Pullarkat
and P. H. Leung, Org. Lett., 2011, 13, 5862; (c) Y. Huang,
S. A. Pullarkat, Y. Li and P.-H. Leung, Inorg. Chem., 2012,
51, 2533; (d) Y. Huang, R. J. Chew, S. A. Pullarkat, Y. Li and
P.-H. Leung, J. Org. Chem., 2012, 77, 6849; (e) R. J. Chew,
Y. Huang, Y. Li, S. A. Pullarkat and P.-H. Leung, Adv. Synth.
Catal., 2013, 355, 1403; (f) Y. Huang, Y. Li, P.-H. Leung and
T. Hayashi, J. Am. Chem. Soc., 2014, 136, 4865;
(g) R. J. Chew, Y. Lu, Y.-X. Jia, B.-B. Li, E. H. Y. Wong,
R. Goh, Y. Li, Y. Huang, S. A. Pullarkat and P.-H. Leung,
Chem. – Eur. J., 2014, 20, 14514; (h) R. J. Chew, K. Y. Teo,
Y. Huang, B.-B. Li, Y. Li, S. A. Pullarkat and P.-H. Leung,
Chem. Commun., 2014, 50, 8768; (i) R. J. Chew, X.-R. Li,
Y. Li, S. A. Pullarkat and P.-H. Leung, Chem. – Eur. J., 2015,
21, 4800; ( j) Y. Huang, S. A. Pullarkat, Y. Li and
P.-H. Leung, Chem. Commun., 2010, 46, 6950.
Acknowledgements
We are grateful to Nanyang Technological University for sup-
porting this research and the research scholarships to Y.-X. J
and X.-Y. Y.
Notes and references
1 For selected reviews, see: (a) G. Erre, S. Enthaler, K. Junge,
S. Gladiali and M. Beller, Coord. Chem. Rev., 2008, 252, 471;
(b) M. S. Shaharun, B. K. Dutta, H. Mukhtar and S. Maitra,
Chem. Eng. Sci., 2010, 65, 273; (c) D. K. Dutta and B. Deb,
Coord. Chem. Rev., 2011, 255, 1686; (d) B. Bosnich, Acc.
Chem. Res., 1998, 31, 667; (e) Phosphorous Ligands in Asym-
metric Catalysis, ed. A. Börner, Wiley-VCH, Weinheim,
2008, vol. I–III.
8 P. E. Garrou, Chem. Rev., 1981, 81, 229.
2 For recent reviews, see: (a) K. J. Szabó, Top. Organomet.
Chem., 2013, 40, 203; (b) D. M. Roddick, Top. Organomet.
Chem., 2013, 40, 49; (c) Organometallic Pincer Chemistry,
9 (a) A. E. Reed, L. A. Curtiss and F. Weinhold, Chem. Rev.,
1988, 88, 899; (b) E. D. Glending, C. R. Landis and
F. Weinhold, WIREs Comput. Mol. Sci., 2012, 2, 1.
Dalton Trans.
This journal is © The Royal Society of Chemistry 2015