Shea et al.
1647
12. F. Gessner and J.C. Scaiano. J. Photochem. Photobiol. A, 67,
91 (1992).
13. M. O’Neill, F.L. Cozens, and N.P. Schepp. J. Phys. Chem. B,
reflectance detection at Dalhousie University is of standard
design and has been previously described (51). The samples,
typically ~300 mg of zeolite, were contained in 3 mm ×
7 mm laser cells made out of Suprasil quartz tubing and de-
gassed at reduced pressure (10–3 torr) prior to photolysis.
For the oxygen-quenching experiments, oxygen was passed
through the sample for at least 30 min prior to photolysis.
The excitation source was the fourth harmonic from a
Continuum Nd:YAG NY-61 laser (266 nm, ≤8 ns/pulse,
≤15 mJ/pulse). Transient signals from a monochromator/
105, 12746 (2001).
14. S. Hashimoto. J. Chem. Soc. Faraday Trans. 93, 4402 (1997).
15. F.L. Cozens, H. Garcia, and J.C. Scaiano. Langmuir, 10, 2246
(1994).
16. F.L. Cozens, M.L. Cano, H. Garcia, and N.P. Schepp. J. Am.
Chem. Soc. 120, 5667 (1998).
17. M.L. Cano, A. Corma, V. Fornes, and H. Garcia. J. Phys.
Chem. 99, 4241 (1995).
18. B.W. Wojciechowski and A. Corma. Catalytic cracking, cataly-
sis kinetics and mechanisms. Marcel Dekker, New York. 1984.
19. H. Choukroun, D. Brunel, and A. Germain. J. Chem. Soc.
Chem. Commun. 6 (1986).
photomultiplier system were initially captured by
a
Tektronix 620A digital oscilloscope and transferred to a
Power Macintosh computer. The experiments are computer
controlled using the Power Macintosh and software written
using the LabviewTM programming language.
20. V. Ramamurthy, D.F. Eaton, and J.V. Caspar. Acc. Chem. Res.
25, 299 (1992).
Data analysis
21. K.B. Yoon. In Handbook of zeolite science and technology.
Edited by S.M. Auerbach, K.A. Carrado, and P.K. Dutta. Mar-
cel Dekker, Inc., New York. 2003. p. 591.
The data analysis was based on the fraction of reflected
light absorbed by the transient (reflectance change, R =
∆J/Jo), where Jo is the reflectance intensity before excitation
and ∆J is the change in the reflectance after excitation. Zeol-
ites are known to contain several different microenvironments,
and as a result, time-resolved decays or growths of transients
in zeolites frequently fit better to a multiple first-order rate
equation (Rt = R∞ + ∆R1e–k1t + ∆R2ek2t + …) than to a single
first-order rate equation (Rt = R∞ + ∆R1e–k1t). In the present
work, the growths and decays of transients sometimes fit
very well to a simple first-order expression; other times, the
data fit better to a double first-order expression, but were
still well-described by a single first-order rate equation.
Thus, for consistency across all time-resolved processes, all
rate constant calculations, unless otherwise specified, were
carried out by nonlinear squares fitting of the data to a single
first-order rate equation.
22. V. Ramamurthy, J.V. Caspar, and D.R. Corbin. J. Am. Chem.
Soc. 113, 594 (1991).
23. P.L. Corio and S. Shih. J. Phys. Chem. 75, 3475 (1971).
24. S.N. Khadzhiev, N.G. Yaralov, and Y.V. Shumorskii. React.
Kinet. Catal. Lett. 24, 297 (1984).
25. M.L. Poutsma. In Zeolite chemistry and catalysis. Edited by
J.A. Rabo. American Chemical Society, Washington, D.C. 1976.
p. 437.
26. H. Garcia, V. Marti, I. Casades, V. Fornes, and H.D. Roth.
Phys. Chem. Chem. Phys. 3, 2955 (2001).
27. T.M. Leu and E. Roduner. J. Catal. 228, 397 (2004).
28. H. Garcia and H.D. Roth. Chem. Rev. 102, 3947 (2002).
29. E. Baciocchi, T. Del Giacco, and F. Elisei. J. Am. Chem. Soc.
115, 12290 (1993).
30. E. Baciocchi, T. Del Giacco, F. Elisei, and O. Lanzalunga. J.
Am. Chem. Soc. 120, 11800 (1998).
31. P.H. Kasai and J.R.J. Bishop. J. Phys. Chem. 77, 2308 (1973).
32. J.A. Rabo, C.L. Angell, P.H. Kasai, and V. Schomaker. Dis-
cuss. Faraday. Soc. 41, 328 (1966).
33. X. Liu and J.K. Thomas. Langmuir, 8, 1750 (1992).
34. J. Bartl, S. Steenken, H. Mayr, and R.A. McClelland. J. Am.
Chem. Soc. 112, 6918 (1990).
35. K. Sehested, J. Holcman, and E.J. Hart. J. Phys. Chem. 81,
1363 (1977).
36. M. Fujiwara and A. Yamasaki. J. Chem. Soc. Faraday Trans.
Acknowledgments
We gratefully acknowledge the Natural Sciences and En-
gineering Research Council of Canada (NSERC) for finan-
cial support of this research.
References
94, 2525 (1998).
37. M. Fujiwara, A. Yamasaki, K. Mishima, and K. Toyomi. J.
Chem. Phys. 109, 1359 (1998).
38. A. Bromberg and D. Meisel. J. Phys. Chem. 89, 2507 (1985).
39. T. Shida. Electronic absorption spectra of radical ions. Elsevier,
New York. 1988.
1. M. Barrer. Zeolites and clay minerals as sorbents and molecu-
lar sieves. Academic Press, London. 1978.
2. D.W. Breck. Zeolite molecular sieves: Structure, chemistry and
use. John Wiley and Sons, New York. 1974.
3. A. Dyer. An introduction to zeolite molecular sieves. John
Wiley and Sons, Bath, UK. 1988.
40. J. Sivaguru, J. Shailaja, and V. Ramamurthy. In Handbook of
zeolite science and technology. Edited by S.M. Auerbach, K.A.
Carrado, and P.K. Dutta. Marcel Dekker, Inc., New York. 2003.
p. 515.
4. J.A. Rabo. In ACS Monograph 171. American Chemical Soci-
ety, Washington, D.C. 1976.
5. N.J. Turro. Pure Appl. Chem. 58, 1219 (1986).
6. H. van Bekkum, E.M. Flanigen, and J.C. Jansen. Introduction
to zeolite science and practice. Elsevier, Amsterdam. 1991.
7. H. Garcia, S. Garcia, J. Perez-Prieto, and J.C. Scaiano. J. Phys.
Chem. 100, 18158 (1996).
8. B.D. Flockhart, L. McLoughlin, and R.C. Pink. J. Catal. 25,
305 (1972).
9. F.L. Cozens, H. Garcia, and J.C. Scaiano. J. Am. Chem. Soc.
41. F.L. Cozens, H. Garcia, and J.C. Scaiano. J. Am. Chem. Soc.
115, 11134 (1993).
42. C. Russo-Caia and S. Steenken. Phys. Chem. Chem. Phys. 4,
1478 (2002).
43. H. Ikeda, T. Nakamura, T. Miyashi, J.L. Goodman, K.
Akiyama, S. Tero-Kubota, A. Houmam, and D.D.M. Wayner.
J. Am. Chem. Soc. 120, 5832 (1998).
115, 11134 (1993).
10. K.K. Iu and J.K. Thomas. J. Phys. Chem. 95, 506 (1991).
11. K.B. Yoon. Chem. Rev. 93, 321 (1993).
44. D.D.M. Wayner, D.J. McPhee, and D. Griller. J. Am. Chem.
Soc. 110, 132 (1988).
© 2005 NRC Canada