Asukamycin Biosynthetic Pathway
25. Hu, Y., Phelan, V. V., Farnet, C. M., Zazopoulos, E., and Bachmann, B. O.
(2008) ChemBioChem 9, 1603–1608
mids in a single step by skipping the PCR cloning and multiple
“stitching” processes (Fig. 3). Since the linearized cosmids are
unable to replicate, the circular recombinant pART1361 could
propagate and form colonies under antibiotic selection. This
straightforward recombination approach is particularly useful
26. Pfennig, F., Schauwecker, F., and Keller, U. (1999) J. Biol. Chem. 274,
12508–12516
27. Zhou, Z., Lai, J. R., and Walsh, C. T. (2007) Proc. Natl. Acad. Sci. U.S.A.
104, 11621–11626
to examine cloned genes and provides a convenient platform 28. Ferreras, J. A., Stirrett, K. L., Lu, X., Ryu, J. S., Soll, C. E., Tan, D. S., and
Quadri, L. E. (2008) Chem. Biol. 15, 51–61
for further gene manipulations. For example, a reliable yield of
4-hydroxyprotoasukamycin D1 was obtained in S. lividans car-
rying the pART1361E3 by replacing asuE3 with a spectinomy-
cin resistance gene.
29. Hertweck, C. (2009) Angew. Chem. Int. Ed. Engl. 48, 4688–4716
30. Sattely, E. S., Fischbach, M. A., and Walsh, C. T. (2008) Nat. Prod. Rep. 25,
757–793
31. Huang, W., Jia, J., Edwards, P., Dehesh, K., Schneider, G., and Lindqvist, Y.
(1998) EMBO J. 17, 1183–1191
32. Olsen, J. G., Kadziola, A., von Wettstein-Knowles, P., Siggaard-Andersen,
M., Lindquist, Y., and Larsen, S. (1999) FEBS Lett. 460, 46–52
33. Tang, Y., Lee, H. Y., Tang, Y., Kim, C. Y., Mathews, I., and Khosla, C. (2006)
Biochemistry 45, 14085–14093
Acknowledgments—We are grateful to C. Khosla (S. lividans K4-114)
and John Innes Center (-Red recombination kit) for the gifts of strains
and plasmids. We thank Drs. J. Chen, G. Henderson, and T. K. Weld-
eghiorghis for assistance with mass spectral and NMR analyses and
M. Saboori for the asuC2 analysis. We thank the anonymous review-
ers for constructive comments.
34. Cohen-Gonsaud, M., Ducasse, S., Hoh, F., Zerbib, D., Labesse, G., and
Quemard, A. (2002) J. Mol. Biol. 320, 249–261
35. Sacco, E., Covarrubias, A. S., O’Hare, H. M., Carroll, P., Eynard, N., Jones,
T. A., Parish, T., Daffe´, M., Ba¨ckbro, K., and Que´mard, A. (2007) Proc.
Natl. Acad. Sci. U.S.A. 104, 14628–14633
REFERENCES
36. Palaniappan, N., Kim, B. S., Sekiyama, Y., Osada, H., and Reynolds, K. A.
(2003) J. Biol. Chem. 278, 35552–35557
1. Sattler, I., Thiericke, R., and Zeeck, A. (1998) Nat. Prod. Rep. 15,
37. Pan, H., Tsai, S., Meadows, E. S., Miercke, L. J., Keatinge-Clay, A. T.,
O’Connell, J., Khosla, C., and Stroud, R. M. (2002) Structure 10,
1559–1568
221–240
2. Shipley, P. R., Donnelly, C. C., Le, C. H., Bernauer, A. D., and Klegeris, A.
(2009) Int. J. Mol. Med. 24, 711–715
38. Tang, Y., Lee, T. S., Kobayashi, S., and Khosla, C. (2003) Biochemistry 42,
6588–6595
39. Astner, I., Schulze, J. O., van den Heuvel, J., Jahn, D., Schubert, W. D., and
Heinz, D. W. (2005) EMBO J. 24, 3166–3177
3. Bernier, M., Kwon, Y. K., Pandey, S. K., Zhu, T. N., Zhao, R. J., Maciuk, A.,
He, H. J., Decabo, R., and Kole, S. (2006) J. Biol. Chem. 281, 2551–2561
4. Zheng, Z. H., Dong, Y. S., Zhang, H., Lu, X. H., Ren, X., Zhao, G., He, J. G.,
and Si, S. Y. (2007) J. Enzyme Inhib. Med. Chem. 22, 43–49
5. Kakinuma, K., Ikekawa, N., Nakagawa, A., and Omura, S. (1979) J. Am.
Chem. Soc. 101, 3402–3404
40. Gerber, R., Lou, L., and Du, L. C. (2009) J. Am. Chem. Soc. 131, 3148–3149
41. Hanada, K. (2003) Biochim. Biophys. Acta 1632, 16–30
42. Webster, S. P., Alexeev, D., Campopiano, D. J., Watt, R. M., Alexeeva, M.,
Sawyer, L., and Baxter, R. L. (2000) Biochemistry 39, 516–528
43. Pacholec, M., Freel Meyers, C. L., Oberthu¨r, M., Kahne, D., and Walsh,
C. T. (2005) Biochemistry 44, 4949–4956
6. Omura, S., Kitao, C., Tanaka, H., Oiwa, R., Takahashi, Y., Nakagawa, A.,
Shimada, M., and Iwai, Y. (1976) J. Antibiot. 29, 876–881
7. Hu, Y. D., and Floss, H. G. (2006) Heterocycles 69, 133–149
8. Hu, Y., and Floss, H. G. (2001) J. Antibiot. 54, 340–348
9. Hu, Y. D., Melville, C. R., Gould, S. J., and Floss, H. G. (1997) J. Am. Chem.
Soc. 119, 4301–4302
44. Schmutz, E., Steffensky, M., Schmidt, J., Porzel, A., Li, S. M., and Heide, L.
(2003) Eur. J. Biochem. 270, 4413–4419
45. Yu, T. W., Bai, L., Clade, D., Hoffmann, D., Toelzer, S., Trinh, K. Q., Xu, J.,
Moss, S. J., Leistner, E., and Floss, H. G. (2002) Proc. Natl. Acad. Sci. U.S.A.
99, 7968–7973
10. Hu, Y. D., and Floss, H. G. (2004) J. Am. Chem. Soc. 126, 3837–3844
11. Thiericke, R., Zeeck, A., Nakagawa, A., Omura, S., Herrold, R. E., Wu,
S. T. S., Beale, J. M., and Floss, H. G. (1990) J. Am. Chem. Soc. 112,
3979–3987
46. Vineis, P., Bartsch, H., Caporaso, N., Harrington, A. M., Kadlubar, F. F.,
Landi, M. T., Malaveille, C., Shields, P. G., Skipper, P., Talaska, G., and
Tannenbaum, S. R. (1994) Nature 369, 154–156
12. Cropp, T. A., Wilson, D. J., and Reynolds, K. A. (2000) Nat. Biotechnol. 18,
980–983
47. Cole, L. J., Gatti, D. L., Entsch, B., and Ballou, D. P. (2005) Biochemistry 44,
8047–8058
13. Beale, J. M., Lee, J. P., Nakagawa, A., Omura, S., and Floss, H. G. (1986)
J. Am. Chem. Soc. 108, 331–332
48. Kirchner, U., Westphal, A. H., Mu¨ller, R., and van Berkel, W. J. (2003)
J. Biol. Chem. 278, 47545–47553
14. Ostash, B., Saghatelian, A., and Walker, S. (2007) Chem. Biol. 14,
257–267
49. van der Werf, M. J., Swarts, H. J., and de Bont, J. A. (1999) Appl. Environ.
Microbiol. 65, 2092–2102
15. Petrícek, M., Petríckova´, K., Havlícek, L., and Felsberg, J. (2006) J. Bacte-
riol. 188, 5113–5123
50. Claxton, H. B., Akey, D. L., Silver, M. K., Admiraal, S. J., and Smith, J. L.
(2009) J. Biol. Chem. 284, 5021–5029
16. Nakagawa, A., Wu, T. S., Keller, P. J., Lee, J. P., Omura, S., and Floss, H. G.
(1985) J. Chem. Soc. Chem. Comm. 519–521
51. Koglin, A., Lo¨hr, F., Bernhard, F., Rogov, V. V., Frueh, D. P., Strieter, E. R.,
Mofid, M. R., Gu¨ntert, P., Wagner, G., Walsh, C. T., Marahiel, M. A., and
Do¨tsch, V. (2008) Nature 454, 907–911
17. Thiericke, R., Zeeck, A., Robinson, J. A., Beale, J. M., and Floss, H. G. (1989)
J. Chem. Soc. Chem. Comm. 402–403
18. Kaneda, T. (1991) Microbiol. Rev. 55, 288–302
19. Zhang, Y. M., and Rock, C. O. (2008) Nat. Rev. Microbiol. 6, 222–233
20. Datsenko, K. A., and Wanner, B. L. (2000) Proc. Natl. Acad. Sci. U.S.A. 97,
6640–6645
52. Kotowska, M., Pawlik, K., Smulczyk-Krawczyszyn, A., Bartosz-Bechowski,
H., and Kuczek, K. (2009) Appl. Environ. Microbiol. 75, 887–896
53. Kim, B. S., Cropp, T. A., Beck, B. J., Sherman, D. H., and Reynolds, K. A.
(2002) J. Biol. Chem. 277, 48028–48034
21. Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F., and Hopwood, D. A.
(2000) Practical Streptomyces Genetics, The John Innes Foundation, Nor- 54. Yeh, E., Kohli, R. M., Bruner, S. D., and Walsh, C. T. (2004) ChemBioChem
wich, UK
5, 1290–1293
22. Suzuki, H., Ohnishi, Y., Furusho, Y., Sakuda, S., and Horinouchi, S. (2006)
J. Biol. Chem. 281, 36944–36951
55. Song, F., Zhuang, Z., Finci, L., Dunaway-Mariano, D., Kniewel, R., Buglino,
J. A., Solorzano, V., Wu, J., and Lima, C. D. (2006) J. Biol. Chem. 281,
11028–11038
23. Binz, T. M., Wenzel, S. C., Schnell, H. J., Bechthold, A., and Mu¨ller, R.
(2008) ChemBioChem 9, 447–454
56. Kotaka, M., Kong, R., Qureshi, I., Ho, Q. S., Sun, H., Liew, C. W., Goh, L. P.,
Cheung, P., Mu, Y., Lescar, J., and Liang, Z. X. (2009) J. Biol. Chem. 284,
15739–15749
24. Wolpert, M., Heide, L., Kammerer, B., and Gust, B. (2008) ChemBioChem
9, 603–612
AUGUST 6, 2010•VOLUME 285•NUMBER 32
JOURNAL OF BIOLOGICAL CHEMISTRY 24923