1
62
S. Wang, Y. Kan / Journal of Molecular Structure 981 (2010) 159–162
ꢁ
1
0
1
2
749 cm . These calculated frequencies for the 2(2S,1 R) and
[3] S.F. Wang, J.Y. Jin, Z.H. Zeng, G.R. Tian, Chin. Chem. Lett. 21 (2010) 159–162.
[4] S.F. Wang, G.R. Tian, W.Z. Zhang, J.Y. Jin, Bioorg. Med. Chem. Lett. 19 (2009)
0
(2R,1 R) conformers were in fair agreement with those of the ob-
served bands, respectively.
5
009–5011.
5] H.S. Lee, D.H. Kim, Bioorg. Med. Chem. 11 (2003) 4685–4691.
[6] H.S. Lee, J.D. Park, D.H. Kim, Bull. Korean Chem. Soc. 24 (2003) 467–472.
[
Meanwhile, the same procedure was applied on TMS to calcu-
late the relative chemical shifts of these two isomers. All the calcu-
lations were performed using the Gaussian 03 program. The plots
were made using experimental proton NMR and carbon NMR data
versus theoretical values, and then analyzed with linear regression.
The correlation coefficient (R ) for the carbon NMR chemical shifts
with the isomer 2(2S,1 R) is 0.9979, for 2(2R,1 R) is 0.9993. The R
for the proton NMR chemical shifts with the isomer 2(2S,1 R) is
.9908, for 2(2R,1 R) is 0.9940 [32].
[
7] D.H. Kim, J.I. Park, S.J. Chung, J.D. Park, N.K. Park, J.H. Han, Bioorg. Med. Chem.
0 (2002) 2553–2560.
8] A.D. Becke, Phys. Rev. A 38 (1988) 3098–3100.
1
[
[9] C.T. Lee, W.T. Yang, R.G. Parr, Theochem-J. Mol. Struct. 40 (1988) 305–313.
10] J.P. Merrick, D. Moran, L. Radom, J. Phys. Chem. A 111 (2007) 11683–11700.
11] N.M. O’Boyle, A.L. Tenderholt, K.M. Langner, J. Comput. Chem. 29 (2008) 839–
[
[
2
845.
0
0
2
[12] K. Wolinski, J.F. Hinton, P. Pulay, J. Am. Chem. Soc. 112 (1990) 8251–8260.
[13] G.W.T.M.J. Frisch, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A.
Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J.
Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson,
H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian,
J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J.
Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A.
Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels,
M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman,
J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A.
Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-
Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W.
Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision C.02,
Gaussian, Inc., Wallingford, CT, 2004.
0
0
0
The computational results are summarized in Tables 2 and 3. It
can be seen that the chemical shifts deduced by the B3LYP/6-
ꢀ
ꢀ
0
0
3
11++G method for isomer 2(2S,1 R) and 2(2R,1 R) are closer to
the experimental carbon and proton NMR data. Comparison of
the experimental and theoretical data made it clear that 2 has a
greater probability of adopting the structure of 2(2S,1 R) and
(2R,1 R).
0
0
2
4
. Conclusions
[
[
[
14] Y.H. Kan, Q. Li, Chem. J. Chin. Univ.-Chin. 30 (2009) 174–177.
15] J.M. Seco, E. Quinoa, R. Riguera, Chem. Rev. 104 (2004) 17–117.
16] J.M. Seco, E. Quinoa, R. Riguera, Tetrahedron: Asymmetry 12 (2001) 2915–
In conclusion, the NMR and IR strategy for determination of the
absolute configuration of a stereogenic center in the a-position of a
carboxylic acid is reliable. The quantum chemistry calculation re-
sults of NMR and IR spectra suggest a relative stereo structure of
2925.
[
17] F. Freire, J.M. Seco, E. Quinoa, R. Riguera, Org. Lett. 12 (2010) 208–211.
[18] A.E. Aliev, D. Courtier-Murias, S. Bhandal, S. Zhou, Chem. Commun. 46 (2010)
695–697.
[19] N.J.S. Harmat, S. Mangani, E. Perrotta, D. Giannotti, R. Nannicini, M. Altamura,
Tetrahedron Lett. 41 (2000) 1261–1264.
0
0
2
(2S,1 R) and 2(2R,1 R) with a great probability.
[
20] G. Helmchen, H. Völter, W. Schühle, Tetrahedron Lett. 18 (1977) 1417–1420.
[21] T.R. Hoye, A.S.S. Hamad, D.O. Koltun, M.A. Tennakoon, Tetrahedron Lett. 41
2000) 2289–2293.
22] S. Demunari, G. Marazzi, A. Forgione, A. Longo, P. Lombardi, Tetrahedron Lett.
1 (1980) 2273–2276.
[23] S. Demunari, G. Marazzi, F. Faustini, V. Villa, L. Carluccio, J. Fluorine Chem. 34
1986) 157–166.
24] M. Hirota, H. Ohigashi, Y. Oki, K. Koshimizu, Agric. Biol. Chem. 44 (1980) 1351–
356.
[25] G.M. Nicholas, T.F. Molinski, Tetrahedron 56 (2000) 2921–2927.
Acknowledgement
(
[
The Project Sponsored by the Scientific Research Foundation
financially supported the work for the Doctoral Program of Yanbian
University, China. Dr Sihong Wang is grateful to Prof. Lixin Wu (Ji-
lin University), Dr. Shrongshi Lin (Peking University), Prof. Qifan
Yin (Huaiyin Normal University) for their assistance in the proofing
of this manuscript, careful review, measuring IR and MS spectra.
2
(
[
1
[
26] A.E. Aliev, S. Bhandal, D. Courtier-Murias, J. Phys. Chem. A 113 (2009) 10858–
0865.
1
[
27] A.E. Klimovitskii, E.E. Zvereva, G.A. Chmutova, A.B. Dobrynin, V.Y. Fedorenko,
Y.G. Shtyrlin, I.A. Litvinov, T.V. Bulygina, E.N. Klimovitskii, J. Mol. Struct. 828
Appendix A. Supplementary material
(
2007) 147–153.
28] K. Omata, K. Kotani, K. Kabuto, T. Fujiwara, Y. Takeuchi, Chem. Commun. 46
2010) 3610–3612.
[
(
[29] K. Akasaka, K. Gyimesi-Forras, M. Lammerhofer, T. Fujita, M. Watanabe, N.
Harada, W. Lindner, Chirality 17 (2005) 544–555.
[
30] V.A. Ershova, V.M. Pogrebnyak, A.V. Golovin, A.V. Virovets, P.P. Semyannikov,
Tetrahedron: Asymmetry 15 (2004) 109–118.
References
[
31] O.M. Nesterova, B.S. Kikot, Khim. Geterotsikl. Soedin. (1979) 181–184.
[
[
1] S.H. Wang, S.F. Wang, W. Xuan, Z.H. Zeng, J.Y. Jin, J. Ma, G.R. Tian, Bioorg. Med.
Chem. 16 (2008) 3596–3601.
[32] X.F. Li, D.H. Zhang, U. Lee, X.G. Li, J.G. Cheng, W.L. Zhu, J.H. Jung, H.D. Choi, B.W.
Son, J. Nat. Prod. 70 (2007) 307–309.