Organic Letters
Letter
1
3,21
illustrated in Scheme 7.
Initially, the deprotonated Breslow
Kangyi Wang − School of Science, State Key Laboratory of
Nanjing 210009, P. R. China
Tao Lu − School of Science, State Key Laboratory of Natural
Medicines, China Pharmaceutical University, Nanjing
210009, P. R. China
intermediate III is formed through combination of the
aldehyde and NHC-I under basic conditions. As mentioned
above, the Breslow enolate may not have enough reductive
potential to reduce the oxime esters. Therefore, Mg(OTf) is
supposed to have an important interaction with the cyclo-
2
butanone oxime ester and enolate III to produce sandwich-
1
4,22
type complex IV.
Next, the thermally controlled SET event
between the enolate and cyclobutanone oxime ester provides
NHC-bound radical V and nitrile alkyl radical VI, respec-
Author Contributions
†L.C. and S.J. contributed equally to this work.
2
3
tively. The nitrile alkyl radical is quickly captured by an
olefin, forming the more stable benzyl radical VII. Subsequent
radical−radical coupling between VII and V affords
intermediate VIII, which is further transformed to the final
product with the regeneration of the NHC for the next
catalytic cycle.
In summary, we have described an NHC/Mg-cocatalyzed
olefin acylcyanoalkylation protocol to access structurally
diverse multifunctionalized aliphatic nitrile molecules. The
proposed Mg/cycloketone oxime ester/Breslow intermediate
EDA complex might account for the observed reactivity.
Moreover, given the simple reaction manipulation, freedom
from transition metal and photoredox catalysts, and wide
substrates generality, the developed protocol might have
widespread use in the fields of molecule assembly, PROTACs,
and dual target inhibitor library synthesis.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are grateful to the National Natural Science Foundation of
China (21572270 and 21702232) and the “Double First-Class”
University Project (CPU2018-GY02 and CPU2018GY35) for
financial support.
REFERENCES
■
(
1) Liu, T.; Wan, Y.; Xiao, Y.; Xia, C.; Duan, G. J. Med. Chem. 2020,
63, 8977 and references therein.
(2) (a) Upton, B. M.; Kasko, A. M. ACS Sustainable Chem. Eng.
2
2
018, 6, 3659. (b) Stempfle, F.; Ortmann, P.; Mecking, S. Chem. Rev.
016, 116, 4597.
ASSOCIATED CONTENT
sı Supporting Information
■
(
3) Krzykawska, A.; Szwed, M.; Ossowski, J.; Cyganik, P. J. Phys.
Chem. C 2018, 122, 919.
4) For selected recent reviews, see: (a) Bhojgude, S. S.; Bhunia, A.;
Biju, A. T. Acc. Chem. Res. 2016, 49, 1658. (b) Neochoritis, C. G.;
Zhao, T.; Domling, A. Chem. Rev. 2019, 119, 1970. (c) Javanbakht, S.;
*
(
̈
pound characterizations, and NMR spectra (PDF)
Shaabani, A. ACS Appl. Bio Mater. 2020, 3, 156. (d) Reguera, L.;
Rivera, D. G. Chem. Rev. 2019, 119, 9836.
(5) For selected reviews focused on dicarbofunctionalization of
alkenes, see: (a) Lin, J.; Song, R.-J.; Hu, M.; Li, J. H. Chem. Rec. 2019,
19, 440. (b) Li, Y.; Wu, D.; Cheng, H.; Yin, G. Angew. Chem., Int. Ed.
2020, 59, 7990. (c) KC, S.; Giri, R. J. Org. Chem. 2018, 83, 3013.
■
(
2
d) Derosa, J.; Apolinar, O.; Kang, T.; Tran, V.; Engle, K. Chem. Sci.
020, 11, 4287. (e) Tu, H.-Y.; Zhu, S.; Qing, F.-L.; Chu, L. Synthesis
Jie Feng − School of Science, State Key Laboratory of Natural
2
(
020, 52, 1346.
3
6) For selected transition-metal-catalyzed C(sp )−C dicarbofunc-
Ding Du − School of Science, State Key Laboratory of Natural
tionalizations of alkenes beyond Pd and Ni, see: (a) Klauck, F. J. R.;
Yoon, H.; James, M. J.; Lautens, M.; Glorius, F. ACS Catal. 2019, 9,
236. (b) Yong, X.; Han, Y.-F.; Li, Y.; Song, R.-J.; Li, J.-H. Chem.
Commun. 2018, 54, 12816. (c) Lv, X.-L.; Wang, C.; Wang, Q.-L.; Shu,
W. Org. Lett. 2019, 21, 56.
3
(
7) For selected Pd-catalyzed C(sp )−C dicarbofunctionalizations of
alkenes, see: (a) Yin, G.; Mu, X.; Liu, G. Acc. Chem. Res. 2016, 49,
413. (b) Zhang, Z.-M.; Xu, B.; Wu, L.; Wu, Y.; Qian, Y.; Zhou, L.;
Liu, Y.; Zhang, J. Angew. Chem., Int. Ed. 2019, 58, 14653.
2
Lei Chen − School of Science, State Key Laboratory of Natural
3
(8) For recent nickel-catalyzed C(sp )−C dicarbofunctionalizations
2
10009, P. R. China
of alkenes, see: (a) García-Domínguez, A.; Mondal, R.; Nevado, C.
Angew. Chem., Int. Ed. 2019, 58, 12286. (b) Mega, R. S.; Duong, V.
K.; Noble, A.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2020, 59, 4375.
(c) Campbell, M. W.; Compton, J. S.; Kelly, C. B.; Molander, G. A. J.
Am. Chem. Soc. 2019, 141, 20069. (d) Ma, T.; Chen, Y.; Li, Y.; Ping,
Y.; Kong, W. ACS Catal. 2019, 9, 9127. (e) Jin, Y.; Wang, C. Angew.
Chem., Int. Ed. 2019, 58, 6722.
Shiyi Jin − School of Science, State Key Laboratory of Natural
2
10009, P. R. China
Jian Gao − School of Science, State Key Laboratory of Natural
2
(9) For selected reviews, see: (a) Chen, X.-Y.; Gao, Z.-H.; Ye, S. Acc.
Tongtong Liu − School of Science, State Key Laboratory of
Nanjing 210009, P. R. China
Yuebo Shao − School of Science, State Key Laboratory of
Nanjing 210009, P. R. China
Chem. Res. 2020, 53, 690. (b) Flanigan, D. M.; Romanov-Michailidis,
F.; White, N. A.; Rovis, T. Chem. Rev. 2015, 115, 9307.
(
2
c) Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. Nature
014, 510, 485. (d) Zhang, C.; Hooper, J. F.; Lupton, D. W. ACS
Catal. 2017, 7, 2583. (e) Mondal, S.; Yetra, S. R.; Mukherjee, S.; Biju,
A. T. Acc. Chem. Res. 2019, 52, 425.
3
98
Org. Lett. 2021, 23, 394−399