286
C. Kayran and E. Okan • Kinetics of the Substitution of Norbomadiene
termining step involves only bond breaking, while
in an associative mechanism ( S n 2 ), the rate deter-
mining step involves both bond breaking and bond
formation [28]. It is expected that the enthalpy of
activation, Z\H^, would approach the M-nbd bond
energy for a predominantly dissociative processes
and be rather independent of the nature of the enter-
ing ligand, whereas for an associative process Z\H^
is expected to be smaller than the M-nbd bond en-
ergy. Single Mo-nbd bond energy is reported to be
111.6 kJ m o r 1 [29], but AH¥ = 46.5 kJ-mol" 1 is
found experimentally. This also clearly indicates
that substitution reaction of Mo(CO)4(?72:2-nbd)
with 2 ,2 ’-bipy has an Sn2 or associative mechanism
in the transition state.
Acknowledgements
The authors thank Prof. Dr. Saim Ozkar for his enthu-
siasm and suggestions in this work. Support of this work
by TÜBITAK under Grant No. TBAG-1226 is gratefully
acknowledged.
[1] a) E. O. Fischer, W. Fröhlich, Chem. Ber. 92, 2995 [11] W. Strohmeier, V. Hobe, Chem. Ber. 94, 2031
(1959). b) C. G. Kreiter, Adv. Organomet. Chem. (1961).
26, 297 (1986); M. Kotzian, C. G. Kreiter, S. Özkar, [12] M. J. Schadt, N. J. Gresalfi, A. J Lees, J. Chem.
Soc., Chem. Commun. 506 (1984).
S. Özkar, J. Organomet. Chem. C13, 152 (1978); [13] M. J. Schadt, N. J. Gresalfi, A. J. Lees, Inorg. Chem.
J. Organomet. Chem. 29, 229 (1982); C. G Kreiter,
26,620(1987).
[14] M. J. Schadt, N. J. Gresalfi, A. J. Lees, Inorg. Chem,
24,2942(1985).
[15] M. J. Schadt, A. J. Lees, Inorg. Chem. 25, 672
I. Fischler, M. Butzwait, E. A. Koemer von Gustorf,
J. Organomet. Chem. 105, 325 (1976); S. Özkar,
N. B. Peynircioglu, Inorg. Chim. Acta 119, 127
(1986); H. Werner, R. Prinz, Chem. Ber. 100, 265
(1967).
(1986).
[2] M. S. Wrighton, M. A. Schröder, J. Am. Chem. Soc.
95, 5764 (1973); D. Ritvelde, L. Wilputte-Steinert,
[16] L. Chan, A.J. Lees, J. Chem. Soc., Dalton Trans.
515 (1987).
J. Organomet. Chem. 118, 191 (1976); M. J. Mir- [17] F. W. Grevels, C. Kayran, S. Özkar, Organometallics
bach, T. N. Phu, A. Sams, J. Organomet. Chem. 236,
309 (1982); M. A. Schröder, M. S. Wrighton, J. Am.
Chem. Soc. 96, 6235 (1974); W. Jennings, B. Hill,
13,2937(1994).
[18] D. M. Manuta, A. J Lees, J. Chem. Ednc. 64, 637
(1987).
J. Am. Chem. Soc. 92, 3199 (1970); W. Abdelqader, [19] H. Drechthom, Chem. Ber. 100, 228 (1967).
[20] H. Brunner, W. A. Hermann, Chem. Ber. 105, 770
(1972).
S. Özkar, N. B. Peynircioglu, Z. Naturforsch. 48b,
539 (1993).
[3] F. Zingales, M. Graziani, U. Belluco, J. Am. Chem.
Soc. 89, 256(1967).
[4] D. T. Dixon, J. A. S. Howell, J. Chem Soc., Dalton
Trans. 1307(1984).
[5] F. Zingales, F. Canziani, F. Basolo, J. Orgonomet.
Chem. 7,461 (1967).
[6] D. T. Dixon, P. M. Burkinshaw, J. A. S. Howell,
J. Chem Soc., Dalton Trans. 2237 (1980).
[7] C. Kayran, E. Okan, S. Özkar, O. Öztürk, S. Sal-
damli, A. Tekkaya, C. G Kreiter, Pure Appl. Chem.
69, 193 (1997).
[21] H. Werner, R. Prinz, Chem. Ber. 100, 265 (1967).
[22] M. A. Bennett, L. Pratt, G. Wilkinson, J. Chem. Soc.
(London) 75, 2037(1961).
[23] M. Y. Darensbourg, D. J. Darensbourg, J. Chem.
Educ. 47, 33 (1970).
[24] M. Kotzian, C. G. Kreiter, S. Özkar, J. Organomet.
Chem. 229, 29 (1982).
[25] B. S. Creaven, F. W. Grevels, C. Lang, Inorg. Chem.
28,2231 (1989).
[26] S. Zhang, I. H. Wang, P. H. Werner, C. B. Dobson,
G. R. Dobson, Inorg. Chem. 31, 3482 (1992).
[8] C. Kayran, C. Kreiter, F. Kozanoglu, S. Ozkar, S. Sal- [27] R. J. Angelici, J. R. Graham, J. Am. Chem. Soc. 87,
5586(1965).
damli, A. Tekkaya, Inorg. Chim. Acta 284, 229
(1999).
[28] F. Basolo, Chem. Rev. 52, 459 (1953).
[29] J. A. Connor, J. P. Day, E. M. Jones, G. K. McEwen,
J. Chem. Soc., Dalton Trans. 347 (1973).
[9] A. Tekkaya, C. Kayran, S. Özkar, Inorg. Chem. 33,
2439(1994).
[10] A.Tekkaya, S. Özkar, J. Organomet. Chem. 590, 208
(1999).
Brought to you by | University of Sydney
Authenticated
Download Date | 9/24/15 12:01 AM