D. Rosen et al. / Biochemical and Biophysical Research Communications 418 (2012) 353–358
357
[18] B. Zhang, V.C. Bailey, B.V.L. Potter, Chemoenzymatic synthesis of 7-deaza cyclic
adenosine 50-diphosphate ribose analogues, membrane-permeant modulators
of intracellular calcium release, J. Org. Chem. 73 (2008) 1693–1703.
[19] T. Kirchberger, C. Moreau, G.K. Wagner, et al., 8-Bromo-cyclic inosine
diphosphoribose: towards a selective cyclic ADP-ribose agonist, Biochem. J.
422 (2009) 139–149.
cADPR-AM (Fig. 4A and E). Depleting the endoplasmic reticular
Ca2+ stores with the intracellular Ca2+ pump inhibitor thapsigargin
(1 lM; [54]) eliminated the response to cADPR-AM (Fig. 4B and E).
Combined, these data are consistent with the notion that cADPR-
AM is mobilizing Ca2+ from the endoplasmic reticulum.
[20] M. Dong, T. Kirchberger, X. Huang, et al., Trifluoromethylated cyclic-ADP-
ribose
mimic:
synthesis
of
8-trifluoromethyl-N(1)-[(500-O-
phosphorylethoxy)methyl]-50-O-phosphorylinosine-50,500-cyclic
pyrophosphate (8-CF(3)-cIDPRE) and its calcium release activity in T cells, Org.
Biomol. Chem. 8 (2010) 4705–4715.
3.6. cADPR-AM responses require ryanodine receptors
If cADPR-AM is indeed passively permeable to cell membranes
and being hydrolyzed to cADPR to elicit its Ca2+-mobilizing effect,
the pharmacology of the response should be consistent with that of
cADPR. For these experiments we used cADPR-AM and PC12 cells.
We examined the effect of depleting ryanodine receptor-contain-
ing stores on the ability of extracellular cADPR-AM to increase
[21] A. Missner, P. Pohl, 110 years of the Meyer-Overton rule: predicting membrane
permeability of gases and other small compounds, Chemphyschem. 10 (2009)
1405–1414.
[22] L.C. Davis, A.J. Morgan, M. Ruas, et al., Ca(2+) signaling occurs via second
messenger release from intraorganelle synthesis sites, Curr. Biol. 18 (2008)
1612–1618.
[23] M. Podestà, F. Benvenuto, A. Pitto, et al., Concentrative uptake of cyclic ADP-
ribose generated by BST-1+ stroma stimulates proliferation of human
hematopoietic progenitors, J. Biol. Chem. 280 (2005) 5343–5349.
[24] L. Guida, L. Franco, S. Bruzzone, et al., Concentrative influx of functionally
active cyclic ADP-ribose in dimethyl sulfoxide-differentiated HL-60 cells, J.
Biol. Chem. 279 (2004) 22066–22075.
[25] L. Guida, S. Bruzzone, L. Sturla, L. Franco, E. Zocchi, A. De Flora, Equilibrative
and concentrative nucleoside transporters mediate influx of extracellular
cyclic ADP-ribose into 3T3 murine fibroblasts, J. Biol. Chem. 277 (2002)
47097–47105.
Ca2+
. Both 20 mM caffeine (Fig. 4C) and 100 lM ryanodine
(Fig. 4D) elicited large and long-lasting Ca2+ increases and
eliminated the subsequent response to cADPR-AM (Fig. 4C–E).
The sustained increases observed with caffeine and ryanodine are
consistent with those reported previously with PC12 cells [48,55].
Acknowledgments
[26] L. Franco, L. Guida, S. Bruzzone, E. Zocchi, C. Usai, A. De Flora, The
transmembrane glycoprotein CD38 is
responsible for generation and influx of the second messenger cyclic ADP-
ribose across membranes, FASEB J. 12 (1998) 1507–1520.
a catalytically active transporter
We thank Prof. H.C. Lee (Department of Physiology, University
of Hong Kong) for the gift of the ADP-ribosyl cyclase. This work
was funded by a grant from the British Heart Association [Grant
PG/09/056/27846].
[27] R.A. Billington, E.A. Bellomo, E.M. Floriddia, J. Erriquez, C. Distasi, A.A.
Genazzani, A transport mechanism for NAADP in a rat basophilic cell line,
FASEB J. 20 (2006) 521–523.
[28] H.C. Lee, T.F. Walseth, G.T. Bratt, R.N. Hayes, D.L. Clapper, Structural
determination of
mobilizing activity, J. Biol. Chem. 264 (1989) 1608–1615.
a -
cyclic metabolite of NAD+ with intracellular Ca2+
References
[29] C. Schultz, Prodrugs of biologically active phosphate esters, Bioorg. Med. Chem.
11 (2003) 885–898.
[1] M.J. Berridge, P. Lipp, M.D. Bootman, The versatility and universality of calcium
signalling, Nat. Rev. Mol. Cell Biol. 1 (2000) 11–21.
[30] T. Posternak, E.W. Sutherland, W.F. Henion, Derivatives of cyclic 30,50-
adenosine monophosphate, Biochim. Biophys. Acta 65 (1962) 558–560.
[2] M.J. Berridge, M.D. Bootman, H.L. Roderick, Calcium signalling: dynamics,
homeostasis and remodelling, Nat. Rev. Mol. Cell Biol. 4 (2003) 517–529.
[31] R.Y. Tsien,
A non-disruptive technique for loading calcium buffers and
[3] H. Streb, R.F. Irvine, M.J. Berridge, I. Schulz, Release of Ca2+ from
a
indicators into cells, Nature 290 (1981) 527–528.
[32] A.B. Jansen, T.J. Russell, Some novel penicillin derivatives, J. Chem. Soc. 65
(1965) 2127–2132.
[33] R.Y. Tsien, Fluorescent probes of cell signaling, Annu. Rev. Neurosci. 12 (1989)
227–253.
[34] W. Li, C. Schultz, J. Llopis, R.Y. Tsien, Membrane-permeant esters of inositol
polyphosphates, chemical syntheses and biological applications, Tetrahedron
53 (1997) 12017–12040.
[35] L. Mackenzie, H.L. Roderick, A. Proven, S.J. Conway, M.D. Bootman, Inositol
1,4,5-trisphosphate receptors in the heart, Biol. Res. 37 (2004) 553–557.
nonmitochondrial intracellular store in pancreatic acinar cells by inositol-
1,4,5-trisphosphate, Nature 306 (1983) 67–69.
[4] H.C. Lee, Cyclic ADP-ribose and NAADP. A story of two calcium messengers, in:
H.C. Lee (Ed.), Cyclic ADP-Ribose and NAADP Structures, Metabolism and
Functions, Kluwer Academic Publishers, Boston, 2002, pp. 1–17.
[5] H.C. Lee, Cyclic ADP-ribose and NAADP: fraternal twin messengers for calcium
signaling, Sci. China Life Sci. 54 (2011) 699–711.
[6] D.L. Clapper, T.F. Walseth, P.J. Dargie, H.C. Lee, Pyridine nucleotide metabolites
stimulate calcium release from sea urchin egg microsomes desensitized to
inositol trisphosphate, J. Biol. Chem. 262 (1987) 9561–9568.
[36] S.J.
Conway,
G.J.
Miller,
Biology-enabling
inositol
phosphates,
[7] A. Galione, G.C. Churchill, Cyclic ADP ribose as
messenger, Sci. STKE 2000 (2000) pe1.
a calcium-mobilizing
phosphatidylinositol phosphates and derivatives, Nat. Prod. Rep. 24 (2007)
687–707.
[37] R. Parkesh, A.M. Lewis, P.K. Aley, et al., Cell-permeant NAADP: a novel chemical
tool enabling the study of Ca2+ signalling in intact cells, Cell Calcium 43 (2008)
531–538.
[8] H.C. Lee, Calcium signaling: NAADP ascends as a new messenger, Curr. Biol. 13
(2003) R186–R188.
[9] E. Venturi, S. Pitt, E. Galfré, R. Sitsapesan, From eggs to hearts: what is the link
between cyclic ADP-ribose and ryanodine receptors?, Cardiovasc. Ther. (2010).
[10] A.H. Guse, Second messenger signaling: multiple receptors for NAADP, Curr.
Biol. 19 (2009) R521–R523.
[38] J.T. Axelson, J.W. Bodley, T.F. Walseth, A volatile liquid chromatography system
for nucleotides, Anal. Biochem. 116 (1981) 357–360.
[39] H.C. Lee, R. Aarhus, ADP-ribosyl cyclase: an enzyme that cyclizes NAD+ into a
calcium-mobilizing metabolite, Cell. Regul. 2 (1991) 203–209.
[40] H.C. Lee, C. Munshi, R. Graeff, Structures and activities of cyclic ADP-ribose,
NAADP and their metabolic enzymes, Mol. Cell. Biochem. 193 (1999) 89–98.
[41] C. Munshi, D.J. Thiel, I.I. Mathews, R. Aarhus, T.F. Walseth, H.C. Lee,
Characterization of the active site of ADP-ribosyl cyclase, J. Biol. Chem. 274
(1999) 30770–30777.
[11] A. Galione, H.C. Lee, W.B. Busa, Ca(2+)-induced Ca2+ release in sea urchin egg
homogenates: modulation by cyclic ADP-ribose, Science 253 (1991) 1143–
1146.
[12] A.J. Morgan, G.C. Churchill, R. Masgrau, et al., Methods in cyclic ADP-ribose and
NAADP research, in: J.W.J. Putney (Ed.), Calcium Signaling, CRC Press, Boca
Raton, 2006, pp. 265–333.
[13] E. Brailoiu, M.D. Miyamoto, Inositol trisphosphate and cyclic adenosine
diphosphate-ribose increase quantal transmitter release at frog motor nerve
terminals: possible involvement of smooth endoplasmic reticulum,
Neuroscience 95 (2000) 927–931.
[14] J.K. Sethi, R.M. Empson, V.C. Bailey, B.V. Potter, A. Galione, 7-Deaza-8-bromo-
cyclic ADP-ribose, the first membrane-permeant, hydrolysis-resistant cyclic
ADP-ribose antagonist, J. Biol. Chem. 272 (1997) 16358–16363.
[15] G.K. Wagner, S. Black, A.H. Guse, B.V.L. Potter, First enzymatic synthesis of an
N1-cyclised cADPR (cyclic-ADP ribose) analogue with a hypoxanthine partial
structure: discovery of a membrane permeant cADPR agonist, Chem. Commun.
(Camb.) (2003) 1944–1945.
[42] C. Schultz, M. Vajanaphanich, H.G. Genieser, B. Jastorff, K.E. Barrett, R.Y. Tsien,
Membrane-permeant derivatives of cyclic AMP optimized for high potency,
prolonged activity, or rapid reversibility, Mol. Pharmacol. 46 (1994) 702–708.
[43] H.C. Lee, R. Aarhus, A derivative of NADP mobilizes calcium stores insensitive
to inositol trisphosphate and cyclic ADP-ribose, J. Biol. Chem. 270 (1995)
2152–2157.
[44] M. Whitaker, Calcium and mitosis, Prog. Cell Cycle Res. 3 (1997) 261–269.
[45] S.R. Vasudevan, A.M. Lewis, J.W. Chan, et al., The calcium-mobilizing
messenger nicotinic acid adenine dinucleotide phosphate participates in
sperm activation by mediating the acrosome reaction, J. Biol. Chem. 285
(2010) 18262–18269.
[16] X. Gu, Z. Yang, L. Zhang, et al., Synthesis and biological evaluation of novel
membrane-permeant
cyclic
ADP-ribose
mimics:
N1-[(500-O-
[46] A.H. Guse, Second messenger function and the structure-activity relationship
of cyclic adenosine diphosphoribose (cADPR), FEBS J. 272 (2005) 4590–4597.
[47] B.V.L. Potter, T.F. Walseth, Medicinal chemistry and pharmacology of cyclic
ADP-ribose, Curr. Mol. Med. 4 (2004) 303–311.
phosphorylethoxy)methyl]-50-O-phosphorylinosine
50,500-
cyclicpyrophosphate (cIDPRE) and 8-substituted derivatives, J. Med. Chem.
47 (2004) 5674–5682.
[17] J. Xu, Z. Yang, W. Dammermann, L. Zhang, A.H. Guse, L.-H. Zhang, Synthesis
and agonist activity of cyclic ADP-ribose analogues with substitution of the
northern ribose by ether or alkane chains, J. Med. Chem. 49 (2006) 5501–5512.
[48] E. Clementi, M. Riccio, C. Sciorati, G. Nisticò, J. Meldolesi, The type 2 ryanodine
receptor of neurosecretory PC12 cells is activated by cyclic ADP-ribose. Role of
the nitric oxide/cGMP pathway, J. Biol. Chem. 271 (1996) 17739–17745.