Please do not adjust margins
Dalton Transactions
Page 6 of 9
DOI: 10.1039/C8DT03403F
ARTICLE
Dalton Transactions
NMR (126 MHz, , C
6
D
6
) δ = 209.93–208.34 (m, -COOH), 184.48 (s, A solution of 3 (11.1 mg, 20.0 µmol) and 2,6-dimethylphenyl
(0.6 mL) was put in a J-Young
, 139.35 (s, -C(Et)=CH-), 136.07 (d, J = 16.3 Hz, -C(Et)=CH-), 49.87 (d, NMR tube. The red solution was stirred for 4 hours at room
6 6
excess CO), 180.10 (d, J = 9.2 Hz, -N=C-), 168.71 (d, J = 9.7 Hz, -N=C- isocyanate (2.9 mg, 20.0 µmol) in C D
)
3
1
J = 13.8 Hz, -C(Et)
2
), 37.88 (ddd, J = 19.6 Hz, 11.7 Hz, 4.4 Hz, - temperature, completion of the reaction was confirmed by P NMR
), 36.22 (s, -C(CH CH ), 28.35 (dd, J = 24.1 Hz, 4.2 Hz, - spectroscopy. Removal of volatiles in vacuo resulted in a red solid
), 27.02 (s, -C(CH CH )=CH-), 14.80 (s, -C(CH CH )=CH-), 9.94 that was used for analysis in NMR experiments (13.6 mg, 97.0 %).
CH ). The sample suitable for elemental analysis was Crystals suitable for X-ray diffraction were grown by slow
crystallized from concentrated pentane. Elemental analysis (%) for evaporation of a pentane solution. H NMR (500 MHz, C
Ni: Calc. C, 57.55; H, 9.14; N, 7.19. Found: C, 57.74; H, 7.04 (d, J = 7.4 Hz, 2H, Ph-H), 6.97 (dd, J = 8.3 Hz, 6.5 Hz, 1H, Ph-H),
.23; N, 7.08. 5.45 (s, 1H, -CONH-), 5.36 (t, J = 3.2 Hz, 1H, -C(Et)=CH-), 2.51 (q, J =
.3 Hz, 2H, -CH CH ), 2.33 (s, 6H, -PhCH ), 2.07 (dq, J = 14.7 Hz, 7.4
Hz, 2H, -CH CH ), 1.58 (ddd, J = 17.9 Hz, 9.6 Hz, 4.2 Hz, 36H, -
PC(CH
PC(CH
3
3
)
)
3
3
2
3 2
)
2
3
2
3
(
s, -C(CH
2
3 2
)
1
6 6
D ) δ =
28 53 3 2 2
C H N P O
9
7
2
3
3
3
2
3
Synthesis of complex 5, (PN P)Ni(OCOOH)
PC(CH
Hz, 3H, -CH
MHz, C ): δ 103.31 (d, J = 280.8 Hz), 103.16 (d, J = 280.8 Hz);
NMR (126 MHz, C ) δ = 181.66 (dd, J = 7.8 Hz, 4.2 Hz, -N=C-),
70.06 dd, J = 7.5 Hz, 5.5 Hz, -N=C-), 157.30 (s, -CONH-), 138.65 (s, -
3
)
3
), 1.26 (dq, J = 14.8 Hz, 7.4 Hz, 2H, -CH
2 3
CH ), 1.13 (t, J = 7.4
A solution of complex 3 (11.1 mg, 20.0 µmol in C
6
D
6
) was put in a J-
31
1
2
CH ), 0.71 (t, J=7.4 Hz, 6H, -CH CH ); P{ H}NMR (202
3
2
3
Young NMR tube. The tube was connected to Schlenk line and then
degassed and saturated with CO three times. The color of the
solution changed to yellow and completion of the reaction
immediately. The resultant C solution was directly used for
analysis in NMR experiments. H NMR (400 MHz, C ) δ = 12.70
br, 1H, -NiOCOOH), 5.35 (t, J = 3.3 Hz, 1H, -C(Et)=CH-), 2.47 (qd, J =
.3 Hz, 1.0 Hz, 2H, -CH CH ), 2.03 (dq, J = 12.8 Hz, 7.4 Hz, 2H, -
CH CH ), 1.56 (ddd, J = 12.0 Hz, 9.4 Hz, 4.3 Hz, 36H, -PC(CH ), 1.24
dq, J = 12.8 Hz, 7.4 Hz, 2H, -CH CH ), 1.10 (t, J = 7.4 Hz, 3H, -
CH CH ), 0.67 (t, J = 7.4 Hz, 6H, -CH CH
): δ 104.19 (d, J = 273.8 Hz), 104.04 (d, J = 273.8 Hz); C NMR
151 MHz, C ) δ = 182.15 (s, -N=C-), 170.48 (t, J = 6.4 Hz, -N=C-),
61.46 (s, Ni-OCOOH), 139.09 (s, -C(Et)=CH-), 138.19–133.79 (m, -
C(Et)=CH-), 124.77 (excess CO ), 52.68–45.12 (m, -C(Et) ), 37.42 (td,
J = 11.8 Hz, 6.9 Hz, -PC(CH ), 36.36 (s, -C(CH CH ), 28.05 (dd, J =
5.3 Hz, 3.6 Hz, -PC(CH ), 27.17 (s, -C(CH CH )=CH-), 14.62 (s, -
13
6
D
6
C
2
6 6
D
1
6 6
D
1
C(Et)=CH-), 138.04 (s, Ph-C), 135.37 (dd, J = 12.0 Hz, 4.9 Hz, -
C(Et)=CH-), 134.31(s, Ph-C), 124.74(s, Ph-C), 49.85 (dd, J = 10.4 Hz,
6 6
D
(
4
.3 Hz, -C(Et)
2
), 37.03 (dt, J = 12.3 Hz, 7.9 Hz, -PC(CH
), 27.72 (dt, J = 20.8 Hz, 2.7 Hz, -PC(CH
)=CH-), 19.22 (s, PhCH ), 14.30 (s, -C(CH CH
). Elemental analysis (%) for C36 NiO
1.46; H, 8.88; N, 7.96. Found: C, 61.38; H, 8.95; N, 8.02. HRMS (ESI)
3
)
3
), 36.01 (s, -
), 26.83 (s, -
)=CH-), 9.52 (s,
: Calc. C,
7
2
3
C(CH
C(CH
2
2
CH
CH
3
3
)
2
3 3
)
2
3
3 3
)
3
2
3
(
2
3
-
C(CH
2
CH
3
)
2
H
62
N
4
2 2
P
3
1
1
2
3
2
3
). P{ H} NMR (162 MHz,
6
13
C
6
D
6
+
Calcd. for C36
03.3772.
62 4 2 2
H N NiO P : requires [M+H] 703.3780, Found:
(
6 6
D
7
1
3
2
2
Synthesis of complex 8, (PN P)Ni(SCONHC
A solution of 3 (11.1 mg, 20.0 µmol) and 2,6-dimethylphenyl
isothiocyanate (3.3 mg, 20.0 µmol) in C (0.6 mL) was put in a J-
Young NMR tube. The red solution was stirred for 4 hours at room
6 3 2
H -2,6-Me )
3
)
3
2
3 2
)
2
3
)
3
2
3
6 6
D
C(CH
2
CH
3
2 3 2
)=CH-), 9.81 (s, -C(CH CH ) ).
3
1
3
temperature, completion of the reaction was confirmed by P NMR
spectroscopy. Removal of volatiles in vacuo resulted in a red solid
that was used for analysis in NMR experiments (13.9 mg, 96.5 %).
Synthesis of complex 6, [(PN P)NiS]CO
A solution of 3 (11.1 mg, 20.0 µmol) and carbon disulfide (7.6 mg,
00.0 µmol) in C (0.6 mL) was put in a J-Young NMR tube. The
red solution was kept at room temperature for 2 hours, completion
1
6 6
D
Crystals suitable for X-ray diffraction were grown by slow
1
evaporation of a pentane solution. H NMR (500 MHz, C
6
D
6
) δ =
3
1
of the reaction was confirmed by P NMR spectroscopy. Removal
of volatiles in vacuo resulted in a dark red solid that was used for
analysis in NMR experiments (11.2 mg, 95.9 %). Crystals suitable for
6
.97 (m, 3H, Ph-H), 6.72 (s, 1H, -CONHAr), 5.43 (t, J = 3.3 Hz, 1H, -
C(Et)=CH-), 2.56 (q, J = 7.4 Hz, 2H, -CH CH ), 2.32 (s, 6H, -PhCH ),
.11 (dq, J = 12.8 Hz, 7.4 Hz, 2H, -CH CH ), 1.61 (ddd, J = 13.6 Hz, 9.3
Hz, 4.2 Hz, 36H, -PC(CH ), 1.31 (dq, J = 12.8 Hz, 7.5 Hz, 2H, -
), 1.16 (t, J = 7.4 Hz, 3H, -CH CH ), 0.73 (t, J=7.4 Hz, 6H, -
): δ 103.05 (d, J = 290.9 Hz),
) δ = 180.89 (dd, J
7.8 Hz, 4.0 Hz, -N=C-), 170.35 (s, -CONH-), 169.49 (t, J = 6.4 Hz, -
2
3
3
2
2
3
X-ray diffraction were grown by slow evaporation of a THF solution.
3 3
)
1
H NMR (600 MHz, C
qd, J = 7.4 Hz, 1.1 Hz, 2H, -CH
CH CH ), 1.63 (ddd, J = 20.0 Hz, 9.6 Hz, 4.0 Hz, 36H, -PC(CH
dq, J = 12.8 Hz, 7.4 Hz, 2H, -CH
CH ), 0.74 (t, J = 7.4 Hz, 6H, -CH
6
D
6
) δ = 5.44 (t, J = 3.2 Hz, 1H, -C(Et)=CH-), 2.58
CH ), 2.13 (dq, J = 12.8 Hz, 7.3 Hz, 2H,
), 1.33
), 1.17 (t, J = 7.4 Hz, 3H, -
CH
2
2
CH
3
2
3
(
-
(
2
3
31
1
CH
CH
3
); P{ H}NMR (202 MHz, C
6
D
6
3
)
3
13
2
3
1
=
6 6
02.90 (d, J = 290.9 Hz); C NMR (126 MHz, C D
2
CH
3
31
1
CH
2
3
2
CH
3
); P{ H}NMR (243 MHz,
N=C-), 139.00 (s, -C(Et)=CH-), 137.10 (s, Ph-C), 135.87 (dd, J = 12.0
Hz, 4.8 Hz, -C(Et)=CH-), 135.33 (s, Ph-C), 126.25 (s, Ph-C), 50.32 (dd,
1
3
C
6
D
6
): δ 104.36 (d, J = 281.9 Hz), 104.24 (d, J = 281.9 Hz); C NMR
126 MHz, C ) δ = 194.89 (q, J = 4.1 Hz, -SCO-), 180.21 (dd, J = 7.3
Hz, 4.1 Hz, -N=C-), 169.17–168.92 (m, -N=C-), 138.72 (s, -C(Et)=CH-),
35.94 (dd, J = 11.4 Hz, 5.3 Hz, -C(Et)=CH-), 50.24 (dd, J = 9.7 Hz, 4.6
Hz, -C(Et) ), 38.49 (td, J = 11.2 Hz, 7.9 Hz, -PC(CH ), 36.43 (s, -
), 29.06 (d, J = 19.9 Hz, -PC(CH ), 27.29 (s, -
)=CH-), 9.99 (s, -C(CH CH ).
OP : Calc. C, 56.42; H, 8.95;
(
6 6
D
J = 10.0 Hz, 4.4 Hz, -C(Et)
2
), 38.64 (dt, J = 13.1 Hz, 9.6 Hz, -PC(CH
), 28.77 (dt, J = 21.0 Hz, 2.4 Hz, -PC(CH
CH )=CH-), 19.03 (s, PhCH
)=CH-), 9.96 (s, -C(CH CH
NiO : Calc. C, 60.09; H, 8.68; N, 7.79. Found: C, 60.06; H,
.70; N, 7.71. HRMS (ESI) Calcd. for C36 NiOP S: requires
3
)
3
),
),
-
3
2
6.47 (s, -C(CH
7.34 (s, -C(CH
CH
2 3 2
CH )
3
)
3
1
2
3
3
), 14.73 (s,
2
3 3
)
C(CH
2
3
2
3 2
) ). Elemental analysis (%) for
C(CH
C(CH
2
2
CH
CH
3
)
2
3 3
)
C
8
36
H
62
N
4
2 2
P
3
)=CH-), 14.74 (s, -C(CH
2
CH
3
2
3 2
)
H
62
N
4
2
Elemental analysis (%) for C55
H
104
N
Ni
6 2
4
S
2
+
[
M+H] 719.3551, Found: 719.3524.
N, 7.18. Found: C, 56.65; H, 8.63; N, 7.09. HRMS (APCI) Calcd. for
+
55
C H
104
N
6
Ni
2
4
OP S
2
: requires [M+H] 1169.5449, Found: 1169.5443.
3
Synthesis of complex 9, (PN P)Ni(NHCOMe)
3
Synthesis of complex 7, (PN P)Ni(OCONHC
6
H
3
-2,6-Me
2
)
6
| Dalton Trans., 2018, 00, 1-9
This journal is © The Royal Society of Chemistry 2018
Please do not adjust margins