Table 2 Hydration of various heteroaromatic nitriles using AgHAPa
and P. Serna, Science, 2006, 313, 332; T. Ishida and M. Haruta,
Angew. Chem., Int. Ed., 2007, 46, 7154; A. Corma, P. Serna and
H. Garcia, J. Am. Chem. Soc., 2007, 129, 6358.
3 Y. Chen, C. Wang, H. Liu, J. Qiu and X. Bao, Chem. Commun.,
2005, 5298; H. Zhao, J. Zhou, H. Luo, C. Zeng, D. Li and Y. Liu,
Catal. Lett., 2006, 108, 49; U. Halbes-Letinois, J.-M. Weibel and
P. Pale, Chem. Soc. Rev., 2007, 36, 759; J. Sun and S. A. Kozmin,
Angew. Chem., Int. Ed., 2006, 45, 4991.
4 C. N. Satterfield, Heterogeneous Catalysis, McGraw-Hill,
New York, 1991; Ullmann’s Encyclopedia of Industrial Chemistry,
ed. W. Gerhartz and Y. S. Yamamoto, VCH, Weinhaim, 1988,
vol. A11; R. A. Van Santen and H. P. C. E. Kuipers, Adv. Catal., 1987,
35, 265; P. A. Kilty and W. M. H. Sachtler, Catal. Rev., 1974, 10, 1.
5 T. Mitsudome, Y. Mikami, H. Funai, T. Mizugaki, K. Jitsukawa
and K. Kaneda, Angew. Chem., Int. Ed., 2008, 47, 138.
Entry
1
Nitrile
Amide
t/min
Yieldb (%)
99 (94)
15
2
3
4
5
6
30
20
60
10
30
95 (93)
98 (94)
95 (91)
99 (95)
99 (95)
6 T. Mitsudome, S. Arita, H. Mori, T. Mizugaki, K. Jitsukawa and
K. Kaneda, Angew. Chem., Int. Ed., 2008, 47, 7938.
7 H. B. Bathina, in Encyclopedia of Chemical Technology,
ed. H. F. Mark, Wiley, New York, 1991, vol. 1, pp. 252–259.
8 J. C. Westfahl and T. L. Gresham, J. Am. Chem. Soc., 1955, 77,
936; B. C. Challis, in Comprehensive Organic Chemistry, ed.
D. Barton and W. D. Ollis, Pergamon, Oxford, 1979, vol. 2,
p. 964; J. March, in Advanced Organic Chemistry, Wiley-
Interscience, New York, 1992, p. 383.
9 Selected examples for hydration of nitriles using homogeneous
metal catalysts: (a) S.-I. Murahashi, S. Sasao, E. Saito and
T. Naota, Tetrahedron, 1993, 49, 8805; (b) T. Ghaffar and
A. W. Parkins, J. Mol. Catal. A: Chem., 2000, 160, 249;
(c) W. K. Fung, X. Huang, M. L. Man, S. M. Ng, M. Y. Hung,
Z. Lin and C. P. Lau, J. Am. Chem. Soc., 2003, 125, 11539;
(d) T. Oshiki, H. Yamashita, K. Sawada, M. Utsunomiya,
K. Takahashi and K. Takai, Organometallics, 2005, 24, 6287;
(e) N. K. Thallaj, J. Przybilla, R. Welter and D. Mandon, J. Am.
Chem. Soc., 2008, 130, 2414; (f) A. Goto, K. Endo and S. Saito,
Angew. Chem., Int. Ed., 2008, 47, 3607.
7
8
20
10
98 (96)
99 (96)
9c
10d
11e
12f
13g
14h
2880
2880
10
10
10
94
99 (97)
99
99
99
99
10 Solid catalysts using water as
a solvent; (a) K. Mori,
K. Yamaguchi, T. Mizugaki, K. Ebitani and K. Kaneda, Chem.
Commun., 2001, 461; (b) K. Yamaguchi, M. Matsushita and
N. Mizuno, Angew. Chem., Int. Ed., 2004, 43, 1576;
(c) S. C. Roy, P. Dutta, L. N. Nandy, S. K. Roy, P. Samuel,
S. M. Pillai, V. K. Kaushik and M. Ravindranathan, Appl. Catal.,
A, 2005, 290, 175; (d) F. Bazi, H. EI Badaoui, S. Tamani, S. Sokori,
A. Solhy, D. J. Macquarrie and S. Sebti, Appl. Catal., A, 2006, 301,
211.
10
a
Reaction conditions: nitrile (1 mmol), AgHAP (0.1 g, Ag:
b
0.03 mmol), water (3 mL), 140 1C. The values in parenthesis are
c
d
isolated yields. Nitrile (0.5 mmol), 40 1C. Nitrile (100 mmol),
AgHAP (0.03 g, Ag: 0.009 mmol), water (35 mL). 1st reuse. 2nd
h
reuse. 3rd reuse. 4th reuse.
e
f
g
11 See the ESIw.
12 The use of organic solvents in the presence of AgHAP gave 2 in low
yield. The yields of 2 were as followed: THF, 2%; 1,4-dioxane, 4%;
DME, 11%; EtOH, 5%.
13 Same or slightly lower reactivities for heteroamoratic nitriles
than benzonitrile were reported in other papers. See: ref. 9b,d,f,
10a, and b.
experiments were carried out by using a facility in the
Research Center for Ultrahigh Voltage Electron Microscopy,
Osaka University. We thank Professor Tsunehiro Tanaka and
Professor Tetsuya Shishido for support of IR study.
14 This is the first report of the hydration of pyrazinecarbonitrile to
pyrazinecarboxamide.
15 B. N. Storhoff and H. C. Lewis, Jr, Coord. Chem. Rev., 1977,
23, 1.
Notes and references
16 Microwave dielectric studies on the dynamics of water provided
information for the strong interaction of H2O with the surface of
the silver NPs to generate a nucleophilic OHÀ species. See the ESI
(Fig. 4S)w.
17 The effect of the substituent on reactivity; a r value of 1.69 in
a Hammett plot with s+ value supports the formation of a
negatively charged transition state. See the ESI (Fig. 9S)w.
1 G. Schmid, Clusters and Colloids, VCH, Weinheim, 1994;
D. L. Feldheim and C. A. Foss, Jr, Metal Nanoparticles, Marcel
Dekker, New York, 2002; G. Schmid, Nanoparticles,
Wiley-VCH, Weinheim, 2004; A. Roucoux, J. Schulz and
H. Patin, Chem. Rev., 2002, 102, 3757.
2 B. L. V. Prasad, S. I. Stoeva, C. M. Sorensen, V. Zaikovski and
K. J. Klabunde, J. Am. Chem. Soc., 2003, 125, 10488; A. Corma
ꢀc
This journal is The Royal Society of Chemistry 2009
3260 | Chem. Commun., 2009, 3258–3260