LETTER
1,3-Phenylene-bis-(1H)-tetrazole Pincer Ligand
2229
Next, we took more reactive aryl halides like 4-nitrochlo-
robenzene (3c), 2-nitrochloro benzene (3d), 4-chloro-
benzaldehyde (3e), 4-chloro-acetophenone (3f) and 2-
chloro-3-nitro pyridine (3g) in the presence of K CO as a
(3) Kim, Y.-J.; Joo, Y.-S.; Han, J.-T.; Won, S. H.; Soon, W. L.
J. Chem. Soc., Dalton Trans. 2002, 18, 3611.
(
4) (a) Moulton, C. J.; Shaw, B. L. J. Chem. Soc., Dalton Trans.
976, 102. (b) Van Koten, G.; Timmer, K.; Noltes, J. G. J.
1
2
3
Chem. Soc., Chem. Commun. 1978, 250.
base and TBAB. The reactions underwent very smoothly
(
5) (a) Cabri, W. Acc. Chem. Res. 1995, 28, 2. (b) Suzuki, A.
Chem. Rev. 1995, 95, 2457. (c) Gupta, M.; Hagen, C.;
Kaska, W. C.; Crammer, R. E.; Jenson, C. M. J. Am. Chem.
Soc. 1997, 119, 840. (d) Dani, P.; Karlen, T.; Gossage, R.
A.; Gladiali, S.; Van Koten, G. Angew. Chem. Int. Ed. 2000,
even in 3 mol% usage of ligand 2 and Pd(OAc) and gave
2
the corresponding coupling products 5 in very good
yields. In order to extend the scope of the present ligand
2
, we tested an aryl bromide and an aryl iodide. 4-Bro-
39, 743. (e) Gorla, F.; Togni, A.; Venanzi, L.
moanisole (3h) as a representative aryl bromide was treat-
ed with aryl boronic acids 4a–e. Here we have taken a
Organometallics 1994, 13, 1607. (f) Stark, M. A.; Richards,
C. J. Tetrahedron Lett. 1997, 38, 5881. (g) Denmark, S.;
Stavenger, R. A.; Faucher, A. M.; Edwards, J. P. J. Org.
Chem. 1997, 62, 3375. (h) Hoveyda, A. H.; Morken, J. P.
Angew. Chem., Int. Ed. Engl. 1996, 35, 1262. (i) Longmire,
J. M.; Zhang, X. Tetrahedron Lett. 1997, 38, 1725.
mixture of ligand (3 mol%), Pd(OAc) (3 mol%), potassi-
2
um carbonate (2 equiv), TBAB, and heated for 10–12
hours in DMF. All arylboronic acids 4a–f including steri-
cally hindered arylboronic acid 4f gave the coupling prod-
ucts in excellent yields. The same methodology was also
successfully applied to 4-iodotoluene (3i) with only 1
mol% of the catalyst. In summary, we have synthesized
the new ligand 1,3-phenylene-bis-(1H)-tetrazole ligand
(
6) (a) Bourissou, D.; Guerret, O.; Gabbai, F. P.; Betrand, G.
Chem. Rev. 2000, 100, 39. (b) Vincent, C.; Bellemin-
Laponnaz, S.; Gade, L. H. Organometallics 2002, 21, 5204.
(
4
c) Tao, B.; Boykin, D. W. Tetrahedron Lett. 2002, 43,
955. (d) Yang, C.; Nolan, S. P. Synlett 2001, 10, 1539.
(
2) and have shown to be an effective catalyst for the
(7) (a) Oh, C. H.; Park, S. J. Tetrahedron Lett. 2003, 44, 3785.
(b) Oh, C. H.; Sung, H.; Park, S. J.; Ahn, K. H. J. Org. Chem.
Suzuki cross-coupling reactions of various aryl chlorides,
2002, 67, 7155. (c) Oh, C. H.; Lim, Y. M. Bull. Korean
bromides and iodides in combination with Pd(OAc) . We
2
Chem. Soc. 2002, 23, 663. (d) Oh, C. H.; Jung, H. H.; Kim,
K. S. Angew. Chem. Int. Ed. 2003, 42, 805. (e) Oh, C. H.;
Gupta, A. K.; Kim, K. S. Chem.Comm. 2004, 618. (f) Oh,
C. H.; Ahn, T. W.; Reddy, V. R. Chem. Commun. 2003,
believe that tetrazole-related ligands can offer promising
features for a number of other important palladium-cata-
lyzed reactions.
2
622.
8) Oh, C. H.; Gupta, A. K.; Song, C. Y. Tetrahedron Lett. 2004,
5, 4113.
(
Acknowledgment
4
We thank the Center of Molecular Design and Synthesis (CMDS)
and BK21for financial support of this research.
(9) Satoh, Y.; Marcopulos, N. Tetrahedron Lett. 1995, 36, 1759.
(10) (a) Diez-Barra, E.; Guerra, J.; Lopez-Solera, I.; Marino, S.;
Rodriguez-Lopez, J.; Sanchez-Verdu, P.; Tejeda, J.
Organometallics 2003, 22, 541. (b) Diez-Barra, E.; Guerra,
J.; Hornillos, V.; Merino, S.; Tejeda, J. Organometallics
References
2003, 22, 4610.
(
1) (a) Burger, A. Prog. Drug. Res. 1991, 37, 287. (b)Setsu,F.;
Umemura, E.; Sasaki, K.; Tadauchi, K.; Okutomi, T.;
Ohtsuka, K.; Takahata, S. PCT Int. Appl. WO 03042188,
(
(
11) (a) Grundemann, S.; Albrecht, M.; Loch, J. A.; Faller, J. W.;
Crabtree, R. H. Organometallics 2001, 20, 5485.
(b) Danopoulos, A. A.; Tsoureas, N.; Green, J. C.;
2003. (c) Schelenz, T.; Schäfer, W. J. Prakt. Chem. 2000,
Hurstouse, M. L. Chem. Commun. 2003, 756.
342, 91. (d) Aurer, F.; Kido, K.; Kurahashi, Y.; Sawada, H.;
12) General Procedure: Palldium acetate (5 mol%), ligand 2 (5
mol%), and appropriate base (2 equiv) and additive TBAB
Tanaka, K.; Otsu, Y.; Hattori, Y.; Shibuya, K.; Abe, T.;
Goto, T.; Ito, S. Eur. Pat. Appl. EP 855394, 1998.
(10 mol%) were taken in DMF (10 mL) and the mixture was
(
e) Ruelke, H.; Friedel, A.; Martin, E.; Kottke, K.; Graefe, I.;
stirred at r.t. for 1 h. Appropriate aryl halides 3a–i (0.1 mol)
and arylboronic acids 4a–f (0.11 mmol, 1.1 equiv) were
added followed by additional portion of DMF (1.0 mL). The
mixture was then stirred at 80–120 °C. The reaction was
monitored by TLC. The reaction mixture was cooled, diluted
with 20 mL of H O and extracted with Et O (2 × 20mL). The
Kuehmstedt, H. Pharmazie 1991, 46, 456.
(2) (a) Van den Heuvel, E. J. P.; Franke, L.; Verschoor, G. C.;
Zuur, A. P. Acta Cryst., Sect. C: Cryst. Struct. Commun.
1989, 39(3), 337. (b) Peter, P. L.; Haasnoot, G. J.; Zuur, P.
A. Inorg. Chim. Acta 1982, 59, 5. (c) Franke, P. L.;
Groeneveld, W. L. Transition Met. Chem. 1981, 6, 54.
2
2
combined organic portion was washed with brine solution,
(
1
d) Franke, P. L.; Groeneveld, W. L. Transition Met. Chem.
980, 5, 240. (e) Franke, P. L.; Groeneveld, L. W. Inorg.
Chim. Acta 1980, 40, 111.
dried over anhyd MgSO , and finally filtered. Evaporatation
4
of the volatiles under reduced pressure to get the
corresponding biphenyl products 5.
Synlett 2004, No. 12, 2227–2229 © Thieme Stuttgart · New York