5962
K.-Y. Chen, T. J. Chow / Tetrahedron Letters 51 (2010) 5959–5963
1981–1983; (e) Yamada, H.; Yamashita, Y.; Kikuchi, M.; Watanabe, H.;
Okujima, T.; Ogawa, T.; Ohara, K.; Ono, N. Chem. Eur. J. 2005, 11, 6212–6220;
(f) Chen, K.-Y.; Hsieh, H.-H.; Wu, C.-C.; Hwang, J.-J.; Chow, T. J. Chem.
Commun. 2007, 10, 1065–1067; (g) Lai, C.-H.; Li, E. Y.; Chen, K.-Y.; Chow, T.
J.; Chou, P.-T. J. Chem. Theory Comput. 2006, 2, 1078–1084; (h) Chuang, T.-H.;
Hsieh, H.-H.; Chen, C.-K.; Wu, C.-C.; Lin, C.-C.; Chou, P.-T.; Chao, T.-H.; Chow,
T. J. Org. Lett. 2008, 10, 2869–2872; (i) Huang, H.-H.; Hsieh, H.-H.; Wu, C.-C.;
Lin, C.-C.; Chou, P.-T.; Chuang, T.-H.; Wen, Y.-S.; Chow, T. J. Tetrahedron Lett.
2008, 49, 4494–4497.
level decreases along the trend. The nitro functionalities provide a
higher stability of n-type charge carriers by lowering the LUMO to
resist ambient oxidation. Working toward their applications on n-
type organic field-effect transistors is in progress.
Acknowledgment
7. (a) Dimitrakopoulos, C. D.; Malenfant, P. R. L. Adv. Mater. 2002, 14, 99–117; (b)
Sun, Y.; Liu, Y.; Zhu, D. J. Mater. Chem. 2005, 15, 53–65.
8. (a) Katz, H. E.; Johnson, J.; Lovinger, A. J.; Li, W. J. Am. Chem. Soc. 2000, 122,
7787–7792; (b) Yoon, M.-H.; DiBenedetto, S. A.; Facchetti, A.; Marks, T. J. J. Am.
Chem. Soc. 2005, 127, 1348–1349.
Financial support from the National Science Council of the Rep.
of China is gratefully acknowledged.
Supplementary data
9. Bao, Z. Adv. Mater. 2000, 12, 227.
10. (a) Jones, B. A.; Facchetti, A.; Marks, T. J.; Wasielewski, M. R. Chem. Mater. 2007,
19, 2703–2705; (b) Katz, H. E.; Lovinger, A. J.; Johnson, J.; Kloc, C.; Siegrist, T.; Li,
W.; Lin, Y. Y.; Dodabalapur, A. Nature 2000, 404, 478–481; (c) Malenfant, P. R.
L.; Dimitrakopoulos, C. D.; Gelorme, J. D.; Kosbar, L. L.; Graham, T. O.; Curioni,
A.; Andreoni, W. Appl. Phys. Lett. 2002, 80, 2517–2519; (d) Law, K. Y. Chem. Rev.
1993, 93, 449–486; (e) Chesterfield, R. J.; McKeen, J.; Newman, C. R.; Frisbie, C.
D. J. Appl. Phys. 2004, 95, 6396–6405; (f) Laquindanum, J. G.; Katz, H. E.;
Dodabalapur, A.; Lovinger, A. J. J. Am. Chem. Soc. 1996, 118, 11331–11332.
11. (a) Kobayashi, S.; Takenobu, T.; Mori, S.; Fujiwara, A.; Iwasa, Y. Appl. Phys. Lett.
2003, 82, 4581–4583; (b) Meijer, E. J.; De Leeuw, D. M.; Setayesh, S.; van
Veenendaal, E.; Huisman, B. H.; Blom, P. W. M.; Hummelen, J. C.; Scherf, U.;
Klapwijk, T. M. Nat. Mater. 2003, 2, 678–682; (c) Haddon, R. C.; Perel, A. S.;
Morris, R. C.; Palstra, T. T. M.; Hebard, A. F.; Fleming, R. M. Appl. Phys. Lett. 1995,
67, 121–123; (d) Lee, T. W.; Byun, Y.; Koo, B. W.; Kang, I. N.; Lyu, Y. Y.; Lee, C.
H.; Pu, L.; Lee, S. Y. Adv. Mater. 2005, 17, 2180–2184.
12. (a) Facchetti, A.; Deng, Y.; Wang, A.; Koide, Y.; Sirringhaus, H.; Marks, T. J.;
Friend, R. H. Angew. Chem., Int. Ed. 2000, 39, 4547–4551; (b) Facchetti, A.;
Mushrush, M.; Katz, H. E.; Marks, T. J. Adv. Mater. 2003, 15, 33–38.
13. (a) Brown, A. R.; de Leeuw, D. M.; Lous, E. J.; Havinga, E. E. Synth. Meter. 1994,
66, 257–261.
14. (a) Bao, Z.; Lovinger, A. J.; Brown, J. J. Am. Chem. Soc. 1998, 120, 207–208; (b)
Shi, M. M.; Chen, H. Z.; Sun, J. Z.; Ye, J.; Wang, M. Chem. Commun. 2003, 14,
1710–1711.
Supplementary data (1H NMR spectra of 1a–1b and 2a–2b;
absorption spectra of 1b–3b in THF; absorption spectra of 1a and
2a in THF under different concentrations) associated with this arti-
References and notes
1. (a) Jonkheijm, P.; Stutzmann, N.; Chen, Z.; de Leeuw, D. M.; Meijer, E. W.;
Schenning, A. P. H. J.; Würthner, F. J. Am. Chem. Soc. 2006, 128, 9535–9540; (b)
Malenfant, P. R. L.; Dimitrakopoulos, C. D.; Gelorme, J. D.; Kosbar, L. L.; Graham,
T. O. Appl. Phys. Lett. 2002, 80, 2157–2519; (c) Liu, S.-G.; Sui, G.; Cormier, R.;
Roger, A.; Leblanc, M.; Gregg, B. A. J. Phys. Chem. B. 2002, 106, 1307–1315; (d)
Struijk, C. W.; Sieval, A. B.; Dakhorst, J. E. J.; van Dijk, M.; Kimkes, P.; Koehorst,
R. B.; Donker, M. H.; Schaafsma, T. J.; Picken, S. J.; van de Craats, A. M.; Warman,
J. M.; Zuilhof, H.; Sudholter, E. J. R. J. Am. Chem. Soc. 2000, 122, 11057–11066;
(e) Chesterfield, R. J.; McKeen, J. C.; Newman, C. R.; Frisbie, C. D.; Ewbank, P. C.;
Mann, K. R.; Miller, L. L. J. Appl. Phys. 2004, 95, 6396–6405; (f) Würthner, F.
Angew. Chem., Int. Ed. 2001, 40, 1037–1039; (g) Katz, H. E.; Bao, Z.; Gilat, S. L.
Acc. Chem. Res. 2001, 34, 359–369; (h) Allard, S.; Forster, M.; Souharce, B.;
Thiem, H.; Scherf, U. Angew. Chem., Int. Ed. 2008, 47, 4070–4098; (i) Zaumseil, J.;
Sirringhaus, H. Chem. Rev. 2007, 107, 1296–1323; (j) Mentovich, E. D.;
Belgorodsky, B.; Kalifa, I.; Cohen, H.; Richter, S. Nano Lett. 2009, 9, 1296–
1300; (k) Dzwilewski, A.; Matyba, P.; Edman, L. J. Phys. Chem. B 2010, 114, 135–
140.
15. Jones, B. A.; Ahrens, M. J.; Yoon, M.-H.; Facchetti, A.; Marks, T. J.; Wasielewski,
M. R. Angew. Chem., Int. Ed. 2004, 43, 6363–6366.
16. Locklin, J.; Li, D.; Mannsfeld, S. C. B.; Borkent, E.-J.; Meng, H.; Advincula, R.; Bao,
Z. Chem. Mater. 2005, 17, 3366–3374.
17. Mellor, J. M.; Mittoo, S.; Parkes, R.; Millar, R. W. Tetrahedron 2000, 56, 8019–
8024.
2. (a) Gregg, B. A.; Cormier, R. A. J. Am. Chem. Soc. 2001, 123, 7959–7960; (b)
Breeze, A. J.; Salomon, A.; Ginley, D. S.; Gregg, B. A.; Tillmann, H.; Horhold, H. H.
Appl. Phys. Lett. 2002, 81, 3085–3087; (c) Gregg, B. A. J. Phys. Chem. 1996, 100,
852–859; (d) You, C.-C.; Saha-Möller, C. R.; Würthner, F. Chem. Commun. 2004,
18, 2030–2031; (e) Hua, J.; Meng, F.; Ding, F.; Li, F.; Tian, H. J. Mater. Chem. 2004,
14, 1849–1853; (f) Neuteboom, E. E.; van Hal, P. A.; Janssen, R. A. J. Chem. Eur. J.
2004, 10, 3907–3918; (g) Breeze, A. J.; Salomon, A.; Ginley, D. S.; Gregg, B. A.;
Tillmann, H.; Hörhold, H.-H. Appl. Phys. Lett. 2002, 81, 3085–3087; (h) Yakimov,
A.; Forrest, S. R. Appl. Phys. Lett. 2002, 80, 1667–1669; (i) Schmidt-Mende, L.;
Fechtenkötter, A.; Müllen, K.; Moons, E.; Friend, R. H.; MacKenzie, J. D. Science
2001, 293, 1119–1122; (j) Cid, J.-J.; Yum, J.-H.; Jang, S.-R.; Nazeeruddin, M. K.;
Martinez-Ferrero, E.; Palomares, E.; Ko, J.; Grätzel, M.; Torres, T. Angew. Chem.,
Int. Ed. 2007, 46, 8358–8362.
3. (a) Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem., Int. Ed. 1998, 37, 402–
428; (b) Ranke, P.; Bleyl, I.; Simmerer, J.; Haarer, D.; Bacher, A.; Schmidt, H. W.
Appl. Phys. Lett. 1997, 71, 1332–1334; (c) Alibert-Fouet, S.; Dardel, S.; Bock, H.;
Oukachmih, M.; Archambeau, S.; Seguy, I.; Jolinat, P.; Destruel, P. Chem. Phys.
Chem. 2003, 4, 983–985; (d) Zukawa, T.; Naka, S.; Okada, H.; Onnagawa, H. J.
Appl. Phys. 2002, 91, 1171–1174; (e) Lo, S.-C.; Burn, P. L. Chem. Rev. 2007, 107,
1097–1116.
18. General procedure for nitration: 3a (or 3b) (1.8 mmol), cerium (IV) ammonium
nitrate (CAN) (1.2 g, 2.2 mmol), nitric acid (2.0 g, 31.7 mmol) and
dichloromethane (150 ml) were stirred at 25 °C under N2 for 2 h. The
mixture was neutralized with 10% KOH and extracted with CH2Cl2. After the
solvent was removed, the crude product was purified by silica gel column
chromatography with the eluent CH2Cl2 to afford 2a (or 2b) in 95% yield.
Characterization data: 2a: 1H NMR (500 MHz, CDCl3) d 8.74 (d, J = 7.6 Hz, 1H),
8.62–8.69 (m, 4H), 8.55 (d, J = 8.5 Hz, 1H), 8.18 (d, J = 7.6 Hz, 1H), 5.00 (m, 2H),
2.54 (m, 4H), 1.91 (m, 4H), 1.76 (m, 6H), 1.47 (m, 4H), 1.34 (m, 2H); 13C NMR
(125 MHz, CDCl3) d 163.40, 163.10, 163.00, 162.11, 147.60, 135.32, 132.78,
132.68, 131.20, 131.01, 129.25, 129.21, 128.87, 127.81, 127.40, 126.44, 126.40,
126.34, 126.19, 125.32, 124.59, 124.35, 123.89, 123.52, 54.46, 54.21, 29.06,
29.00, 26.45, 26.41, 25.34, 25.29; IR (KBr): 2928, 2851, 1700, 1659, 1596, 1539,
1401, 1336, 1262, 1245, 1190, 809, 743 cmÀ1
; MS (FAB): m/z (relative
intensity) 600 (M+H+, 100); HRMS calcd for C36H30O6N3 600.2135, found
600.2141. Selected data for 2b: 1H NMR (500 MHz, CDCl3) d 8.79 (d, J = 8.0 Hz,
1H), 8.73–8.67 (m, 4H), 8.60 (d, J = 8.0 Hz, 1H), 8.23 (d, J = 8.5 Hz, 1H), 4.19 (m,
4H), 1.76 (m, 4H), 1.26–1.54 (m, 20H), 0.87 (t, J = 6.5, 6H); MS (FAB): m/z
(relative intensity) 660 (M+H+, 100); HRMS calcd for C40H42O6N3 660.3074,
found 660.3076.
4. (a) Wood, T. E.; Thompson, A. Chem. Rev. 2007, 107, 1831–1861; (b) Loewe, R.
S.; Tomizaki, K.; Youngblood, W. J.; Bo, Z.; Lindsey, J. S. J. Mater. Chem. 2002, 12,
3438–3451; (c) Tomizaki, K.; Loewe, R. S.; Kirmaier, C.; Schwartz, J. K.; Retsek, J.
L.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Org. Chem. 2002, 67, 6519–6534; (d)
Li, X.; Sinks, L. E.; Rybtchinski, B.; Wasielewski, M. R. J. Am. Chem. Soc. 2004, 126,
10810–10811; (e) Rybtchinski, B.; Sinks, L. E.; Wasielewski, M. R. J. Am. Chem.
Soc. 2004, 126, 12268–12269; (f) Ramos, A. M.; Beckers, E. H. A.; Offermans, T.;
Meskers, S. C. J.; Janssen, R. A. J. J. Phys. Chem. A. 2004, 108, 8201–8211; (g) Xiao,
S.; Li, Y.; Li, Y.; Zhuang, J.; Wang, N.; Liu, H.; Ning, B.; Liu, Y.; Lu, F.; Fan, L.; Yang,
C.; Li, Y.; Zhu, D. J. Phys. Chem. B. 2004, 108, 16677–16685; (h) Li, Y.; Liu, Y.;
Wang, N.; Li, Y.; Liu, H.; Lu, F.; Zhuang, J.; Zhu, D. Carbon 2005, 43, 1968–1975;
(i) Li, Y.; Li, Y.; Liu, H.; Wang, S.; Wang, N.; Zhuang, J.; Li, X.; He, X.; Zhu, D.
Nanotechnology 2005, 16, 1899–1904.
5. (a) Hu, W. S.; Tao, Y. T.; Hsu, Y. J.; Wei, D. H.; Wu, Y. S. Langmuir 2005, 21, 2260–
2266; (b) Lukas, S.; Söhnchen, S.; Witte, G.; Wöll, C. ChemPhysChem 2004, 5,
266–270; (c) Weidkamp, K. P.; Hacker, C. A.; Schwartz, M. P.; Cao, X.; Tromp, R.
M.; Hamers, R. J. J. Phys. Chem. B. 2003, 107, 11142–11148.
6. (a) Weidkamp, K. P.; Afzali, A.; Tromp, R. M.; Hamers, R. J. J. Am. Chem. Soc.
2004, 126, 12740–12741; (b) Afzali, A.; Dimitrakopoulos, C. D.; Breen, T. J.
Am. Chem. Soc. 2002, 124, 8812–8813; (c) Herwig, P. T.; Müllen, K. Adv.
Mater. 1999, 11, 480–483; (d) Uno, H.; Yamashita, Y.; Kikuchi, M.; Watanabe,
H.; Yamada, H.; Okujima, T.; Ogawa, T.; Ono, N. Tetrahedron Lett. 2005, 46,
19. General procedure for nitration: 2a (or 2b) (1.7 mmol), cerium (IV) ammonium
nitrate (CAN) (4.8 g, 8.8 mmol), nitric acid (8.0 g, 131.1 mmol), and
dichloromethane (250 ml) were stirred at 25 °C under N2 for 48 h. The
mixture was neutralized with 10% KOH and extracted with CH2Cl2. After the
solvent was removed, the crude product was purified by silica gel column
chromatography with the eluent CH2Cl2 to afford a mixture of 1,7- and -1,6-
dinitroperylene bisimides, and 1H NMR (500 MHz) analysis revealed a 3:1
ratio. The regioisomeric 1,7- and 1,6-dinitroperylene bisimides could not be
separated by column chromatography. Regioisomerically pure 1,7-
dinitroperylene bisimides was obtained by repetitive crystallization.
Characterization data: 1a: 1H NMR (500 MHz, CDCl3) d 8.78 (s, 2H), 8.67 (d,
J = 8.5 Hz, 2H), 8.28 (d, J = 8.5 Hz, 2H), 4.99 (m, 2H), 2.51 (m, 4H), 1.92 (m, 4H),
1.74 (m, 6H), 1.46 (m, 4H), 1.36 (m, 2H); MS (FAB): m/z (relative intensity) 645
(M+H+, 100); HRMS calcd for C36H29O8N4 645.1985, found 645.1981. Selected
data for 1b: 1H NMR (500 MHz, CDCl3) d 8.82 (s, 2H), 8.71 (d, J = 8.0 Hz, 2H),
8.30 (d, J = 8.0 Hz, 2H), 4.20 (m, 4H), 1.75 (m, 4H), 1.26–1.53 (m, 20H), 0.87 (t,
J = 6.5, 6H); 13C NMR (125 MHz, CDCl3) d 161.97, 161.46, 148.29, 132.57,
130.36, 129.60, 128.67, 127.56, 126.30, 125.58, 124.53, 124.44, 41.06, 31.72,
29.19, 29.10, 27.96, 26.98, 22.55, 13.99; MS (FAB): m/z (relative intensity) 705
(M+H+, 100); HRMS calcd for C40H41O8N4 705.2924, found 705.2923.
20. Rajasingh, P.; Cohen, R.; Shirman, E.; Shimon, J. W.; Rybtchinski, B. J. Org. Chem.
2007, 72, 5973–5979.