10.1002/anie.201915454
Angewandte Chemie International Edition
COMMUNICATION
observe 64% of 2b by 1H-NMR, showing that the proposed
nickel π-allyl species is a competent intermediate. Although
mechanistic experiments involving radical inhibitors were
performed, the results were inconclusive (See SI).
crystallographic analysis. Finally, we thank Dr. Malkanthi K.
Karunananda for helpful discussion regarding DFT calculations.
Based on these results, we propose the catalytic cycle as
depicted in Scheme 3C, where oxidative addition of an allyl
electrophile gives a nickel π-allyl species, which may undergo
isomerization from Z to E. This nickel complex can then bind the
substrate and undergo 1,2-migratory insertion of the allyl group
to give a new alkyl-nickel species. Transmetallation then occurs
to give a doubly chelation-stabilized dialkyl-nickel species. At
this stage, dissociation of either the alkene or the heterocycle
must take place in order to allow the two alkyl groups to be in a
cis orientation prior to C(sp3)–C(sp3) reductive elimination, which
gives the desired allylmethylation product. To probe which of the
two possibilities was more likely, we performed computational
analysis using density functional theory (DFT) (Scheme 3D).
Substrate 5b was used as model reactant since in this case the
directing group has only one possible coordination site. Ethylene
was used as a representative of all alkene moieties in solution to
take over the vacant coordination site. The computed transition
state for reductive elimination with alkene coordinated (TS-ene-
ethylene) is 10.5 kcal/mol lower in energy than the carbonyl-
bound transition state (TS-DG-ethylene) (see SI for details),
consistent with previous reports that have documented the
effectiveness of alkene ligands for this purpose.5c,11 (Although
we believe this pathway to be the most likely, alternative
mechanisms cannot be excluded and are depicted in the SI.)
In conclusion, we have demonstrated the compatibility of allyl
electrophiles in conjunctive alkene cross-coupling. In particular,
Conflict of interest
The authors declare no conflict of interest.
Keywords: allylation • dicarbofunctionalization • conjunctive
cross coupling • heterocycles • nickel catalysis
[1]
a) B. M. Trost, M. L. Crawley, Chem. Rev. 2003, 103, 2921–2943; b) B.
M. Trost, Tetrahedron 2015, 71, 5708–5733; c) N. A. Butt, W. Zhang,
Chem. Soc. Rev. 2015, 44, 7929–7967; d) J. T. Mohr, B. M. Stoltz,
Chem. Asian J. 2007, 2, 1476–1491; e) J. D. Weaver, A. Recio III, A. J.
Grenning, J. A. Tunge, Chem. Rev. 2011, 111, 1846–1913.
[2]
a) A. Yanagisawa, N. Nomura, S. Habaue, H. Yamamoto, Tetrahedron
Lett. 1989, 30, 6409–6412; b) N. Nomura, T. V. RajanBabu,
Tetrahedron Lett. 1997, 38, 1713–1716; c) K. Lee, J. Lee, P. H. Lee, J.
Org. Chem. 2002, 67, 8265–8268; d) S. Son, G. C. Fu, J. Am. Chem.
Soc. 2008, 130, 2756–2757; e) Y. Sumida, S. Hayashi, K. Hirano, H.
Yorimitsu, K. Oshima, Org. Lett. 2008, 10, 1629–1632; f) B. J. Stokes,
S. M. Opra, M. S. Sigman, J. Am. Chem. Soc. 2012, 134, 11408–
11411; g) X. Cui, S. Wang, Y. Zhang, W. Deng, Q. Qian, H. Gong, Org.
Biomol. Chem. 2013, 11, 3094–3097; h) H. D. Srinivas, Q. Zhou, M. P.
Watson, Org. Lett. 2014, 16, 3596–3599; i) K. Hojoh, Y. Shido, K.
Nagao, S. Mori, H. Ohmiya, M. Sawamura, Tetrahedron 2015, 71,
6519–6533; j) B. Yang, Z.-X. Wang, J. Org. Chem. 2017, 82, 4542–
4549; k) H. Chen, X. Jia, Y. Yu, Q. Qian, H. Gong, Angew. Chem., Int.
Ed. 2017, 56, 13103–13106; Angew. Chem. 2017, 129, 13283–13286;
l) J. L. Hofstra, A. H. Cherney, C. M. Ordner, S. E. Reisman, J. Am.
Chem. Soc. 2018, 140, 139–142; m) X.-G. Jia, P. Guo, J. Duan, X.-Z.
Shu, Chem. Sci. 2018, 9, 640–645; n) Y. Lan, F. Yang, C. Wang, ACS
Catal. 2018, 8, 9245–9251.
we developed
a
nickel-catalyzed regioselective 1,2-
allylmethylation reaction of a variety of N-allyl heterocycles that
proceeds under mild conditions without the need for an external
ligand. The reaction tolerates a wide scope of allyl electrophiles
with electron donating, electron withdrawing, and sterically
encumbering substituents. It is shown that alkynes may be
difunctionalized under similar conditions. Notably, diverse
heterocycles such as phthalimide, pyridone, quinolone,
pyridazinone, pyrazole, triazole, tetrazole, and benzoxazole are
also tolerated and enable the regioselective functionalization of
adjacent unactivated alkenes. The versatility of the resulting
products for downstream modification is showcased in two
deprotections and six alkene diversification reactions.
[3]
[4]
a) J. Derosa, V. T. Tran, V. A. van der Puyl, K. M. Engle, Aldrichimica
Acta 2018, 51, 21−32; b) R. Giri, S. KC, J. Org. Chem. 2018, 83,
3013−3022.
a) T. Qin, J. Cornella, C. Li., L. R. Malins, J. T. Edwards, S. Kawamura,
B. D. Maxwell, M. D. Eastgate, P. S. Baran, Science 2016, 352,
801−805; b) J.-W. Gu, Q.-Q. Min, L.-C. Yu, X. Zhang, Angew. Chem.,
Int. Ed. 2016, 55, 12270−12274; Angew. Chem. 2016, 128, 12458–
12462; c) A. García-Dominguez, Z. Li, C. Nevado, J. Am. Chem. Soc.
2017, 139, 6835−6838; d) P. Gao, L.-A. Chen, M. K. Brown, J. Am.
Chem. Soc. 2018, 140, 10653–10657.
[5]
a) J. Derosa, V. T. Tran, M. N. Boulous, J. S. Chen, K. M. Engle, J. Am.
Chem. Soc. 2017, 139, 10657–10660; b) J. Derosa, V. A. van der Puyl,
V. T. Tran, M. Liu, K. M. Engle, Chem. Sci. 2018, 9, 5278–5283; c). J.
Derosa, R. Kleinmans, V. T. Tran, M. K. Karunananda, S. R.
Wisniewski, M. D. Eastgate, K. M. Engle, J. Am. Chem. Soc. 2018, 140,
17878–17883; d) V. A. van der Puyl, J. Derosa, K. M. Engle, ACS Catal.
2019, 9, 224–229; e) J. Derosa, T. Kang, V. T. Tran, S. R. Wisniewski,
M. K. Karunananda, T. C. Jankins, K. L. Xu, K. M. Engle, Angew.
Chem., Int. Ed. 2019, Just Accepted.
Acknowledgements
This work was financially supported by Bristol-Myers Squibb
(Unrestricted Grant), the National Science Foundation (CHE-
1800280), and the National Institutes of Health (R35GM128779).
We gratefully acknowledge the following graduate fellowship
programs: Frank J. Dixon Fellowship (V.T.T.) and the National
Science Foundation (DGE-1346837) (J.D.). T.J.G. was
supported by Claremont McKenna College through the CMC
Sponsored Internships & Experiences program. We thank Dr.
Dee-Hua Huang and Dr. Laura Pasternack for assistance with
NMR spectroscopy. We also thank Prof. Arnold L. Rheingold, Dr.
Milan Gembicky, and Dr. Curtis E. Moore (UCSD) for X-ray
[6]
a) B. Shrestha, P. Basnet, R. K. Dhungana, S. KC, S. Thapa, J. M.
Sears, R. Giri, J. Am. Chem. Soc. 2017, 139, 10653−10656; b) W. Li, J.
K. Boon, Y. Zhao, Chem. Sci. 2018, 9, 600−607; c) P. Basnet, S. KC, R.
K. Dhungana, B. Shrestha, T. J. Boyle, R. Giri, J. Am. Chem. Soc. 2018,
140, 15586−15590; d) S. Thapa, R. K. Dhungana, R. T. Magar, B.
Shrestha, S. KC, R. Giri, Chem. Sci. 2018, 9, 904−909; e) X. Zhao, H.-
Y. Tu, L. Guo, S. Zhu, F.-L. Qing, L. Chu, Nat. Commun. 2018, 9, 3488.
a) K. Semba, N. Ohta, Y. Yano, Y. Nakao, Chem. Commun. 2018, 54,
11463–11466; b) K. Semba, N. Ohta, Y. Nakao, Org. Lett. 2019, 21,
4407–4410.
[7]
This article is protected by copyright. All rights reserved.