Page 5 of 7
Crystal Growth & Design
1
2
3
4
5
6
7
8
(19) Paul, A. K. Tuning of coordination behavior of thiosulfate
REFERENCES
ion by organic linkers in cadmium thiosulfate compounds. J.
Mol. Str. 2016, 1125, 696-704.
(20) Rao, C. N. R.; Natarajan, S.; Choudhury, A.; Neeraj, S.; Ayi, A.
A. Aufbau Principle of complex Open-Framework Structures
of Metal Phosphates with Different Dimensionalities. Acc.
Chem. Res., 2001, 34, 80-87.
(21) Murugavel, R.; Walawalkar, M.G.; Dan, M.; Roesky, H. W.;
Rao, C. N. R. Transformations of Molecules and Secondary
Building Units to Materials: A-Bottom-Up Approach, Acc.
Chem. Res., 2004, 37, 763-774.
(22) Paul, A. K.; Natarajan, S. Amine-templated aluminoborates
exhibiting graphite and diamond nets. Cryst. Growth.Des.
2010, 10, 765-774.
(23) Paul, A. K.; Sachidananda, S.; Natarajan, S. [B4O9H2] Cyclic
borate units as the building unit in a family of zinc borate
structures. Cryst. Growth. Des. 2010, 10, 456-464.
(24) Paul, A. K.; Madras, G.; Natarajan, S., Synthesis, structure,
transformation studies and catalytic properties of open-
framework cadmium thiosulfate compounds. Dalton. Trans.
2010, 39, 2263-2279.
(25) Paul, A. K.; Madras, G.; Natarajan, S. Adsorption-desorption
and photocatalytic properties of inorganic-organic hybrid
cadmium thiosulfate compounds. Phys. Chem. Chem. Phys.
2009, 11, 11285-11296.
(26) Paul, A. K.; Madras, G.; Natarajan, S., The illustrative use of
thiosulfate in the formation of new three-dimensional
hybrid structures, CrystEngComm. 2009, 11, 55-57.
(27) Paul, G.; Choudhury, A.; Sampathkumaran, E. V.; Rao. C. N.
Angew. Chem. Int. Ed. 2002, 41, 4297-4300.
(28) Yotnoi, B.; Rujiwatra, A.; Reddy, M. L. P.; Sarma, D.;
Natarajan. S. Lanthanide Sulfate Frameworks: Synthesis,
Structure, and Optical Properties. Cryst. Growth Des. 2011, 11,
1347-1356.
(29) Behera, J. N.; Gopalkrishnan, K. V.; Rao. C. N. R. Synthesis,
Structure, and Magnetic Properties of Amine-Templated
Open-Framework Nickel(II) Sulfates. Inorg. Chem. 2004, 43,
2636-2642.
(30) Paul, A. K. Synthesis, structure and topological analysis of
glycine templated highly stable cadmium sulfate framework:
A New Lewis Acid catalyst. J. Mol. Str. 2018, 1157, 672-678.
(31) Paul, A. K.; Sanyal, U.; Natarajan, S. Use of
polyazaheterocycles in the assembly of new cadmium sulfate
frameworks: synthesis, structure, and properties. Cryst.
Growth. Des. 2010, 10, 4161-4175.
(1) Ferey, G. Hybrid porous solids: past, present, future. Chem.
Soc. Rev. 2008, 37, 191-214.
(2) Foo, M. L.; Matsuda, R.; Kitagawa, S. Functional Hybrid
Porous Coordination Polymers. Chem. Mater. 2014, 26, 310-
322.
(3) Wang, M.-S.; Guo, G.-C.; Chen, W.-T.; Xu, G.; Zhou, W.-W.;
Wu, K.-J.; Huang, J.-S. A White-Light-Emitting Borate-Based
Inorganic–Organic Hybrid Open Framework. Angew. Chem.
Int. Ed. 2007, 46, 3909-3911.
(4) Wang, F.; Liu, Z.-S.; Yang, H.; Tan, Y.-X.; Zhang, J. Hybrid
Zeolitic Imidazolate Frameworks with Catalytically Active
TO4 Building Blocks. Angew. Chem. Int. Ed. 2011, 50, 450-453.
(5) Umeyama, D.; Horike, S.; Inukai, M.; Itakura, T.; Kitagawa,
S. Reversible Solid-to-Liquid Phase Transition of
Coordination Polymer Crystals. J. Am. Chem. Soc. 2015, 137,
864-870.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(6) Paul, A. K.; Karthik, R.; Natarajan, S. Synthesis, structure,
photochemical [2 + 2] cycloaddition, transformation, and
photocatalytic studies in
hybrid cadmium thiosulfate compounds. Cryst. Growth Des.
2011, 11, 5741-5749.
a family of inorganic-organic
(7) Diaz, U.; Corma, A. Organic-Inorganic Hybrid Materials:
Multi-Functional Solids for Multi-Step Reaction Processes.
Chem. A Eur. J. 2018, 24, 3944-3958.
(8) Gaona, A.; Diaz, U.; Corma, A. Functional Acid and Base
Hybrid Catalysts Organized by Associated (Organo)
aluminosilicate Layers for C–C Bond Forming Reactions and
Tandem Processes. Chem. Mater. 2017, 29, 1599-1612.
(9) Natarajan, S.; Mandal, S. Open-Framework Structures of
Transition-Metal Compounds. Angew. Chem., Int. Ed. 2008,
47, 4798-4828.
(10) Rao, C. N. R.; Behra, J. N.; Dan, M. Organically-templated
metal sulfates, selenites and selenates. Chem. Soc. Rev.,
2006, 35, 375-387.
(11) Cheetham, A. K.; Ferey, G.; Loiseau, T. Open-Framework
Inorganic Materials. Angew. Chem., Int. Ed. 1999, 38, 3268-
3292.
(12) Chen, L.; Bu, X. (3,4)-Connected Zincophosphites as
Structural Analogues of Zinc Hydrogen Phosphate. Inorg.
Chem. 2006, 45, 4654-4660.
(13) Lai, Y. L.; Lii, K. H.; Wang. S. L. 26-Ring-Channel Structure
Constructed from Bimetal Phosphite Helical Chains. J. Am.
Chem. Soc. 2007, 129, 5350-5351.
(14) Liu, C. L.; Liu, H. K.; Chang, W. J.; Lii. K. H.
K2Ca4[(UO2)(Si2O7)2]:
Dimensional Chain Structure. Inorg. Chem., 2015, 54, 8165-
8167.
A Uranyl Silicate with a One-
(32) Harris, K. D. M. Mechanochemical Synthesis: How Grinding
Evolves. Nature Chem. 2013, 5, 12-14.
(33) Biswal, B. P.; Chandra, S.; Kandambeth, S.; Lukose, B.;
Heine, T.; Banerjee, R., Mechanochemical Synthesis of
(15) Liu, H.-K.; Peng, C.-C.; Chang, W.-J.;. Lii, K.-H. Tubular
Chains, Single Layers, and Multiple Chains in Uranyl
Silicates: A2[(UO2)Si4O10] (A = Na, K, Rb, Cs). Cryst. Growth
Des. 2016, 16, 5268-5272.
(16) Liu, H.-K.; Chang, W.-J.; Lii, K.-H. High-Temperature, High-
Pressure Hydrothermal Synthesis and Characterization of an
Open-Framework Uranyl Silicate with Nine-Ring Channels:
Cs2UO2Si10O22. Inorg. Chem. 2011, 50, 11773-11776.
(17) Paul, A. K.; Kanagaraj, R.; Jana, A. K.; Maji. P. K. Novel amine
templated three-dimensional zinc-organophosphonates with
variable pore-openings. CrystEngComm. 2017, 19, 6425-6435.
(18) Paul, A. K.; Kanagaraj, R.; Pant, N.; Naveen, K. Rare
Examples of Amine-Templated Organophosphonate Open-
Framework Compounds: Combined Role of Metal and
Amine for Structure Building Cryst. Growth Des. 2017, 17,
5620-5624.
Chemically
Stable Isoreticular Covalent Organic
Frameworks. J. Am. Chem. Soc. 2013, 135, 5328-5331.
(34) Bowmaker, G. A. Solvent-Assisted Mchanochemistry. Chem.
Commun. 2013, 49, 334-348.
(35) Peng, Y.; Xu, G.; Hu, Z.; Cheng, Y.; Chi, C.; Yuan, D.; Cheng,
H.; Zhao, D. Mechanoassisted Synthesis of Sulfonated
Covalent Organic Frameworks with High Intrinsic Proton
Conductivity. ACS Appl. Mater. Interfaces, 2016, 8, 18505-
18512.
(36) James, S. L.; Adams, C. J.; Bolm, C.; Braga, D.; Collier, P.;
Friscic, T.; Grepioni, F.; Harris, K. D. M.; Hyett, G.; Jones,
W.; Krebs, A.; Mack, J.; Maini, L.; Orpen, A. G.; Parkin, I. P.;
Shearouse, W. C.; Steed, J. W.; Waddell, D. C.
Mechanochemistry: opportunities for new and cleaner
synthesis. Chem. Soc. Rev., 2012, 41, 413-447.
(37) Matoga, D.; Oszajca, M.; Molenda, M. Ground to Conduct:
mechanochemical synthesis of a metal-organic framework
ACS Paragon Plus Environment