Angewandte Chemie International Edition
10.1002/anie.201911701
COMMUNICATION
cyclopropenation of internal alkynes with ethyl diazoacetate, albeit with
low yield and low enantioselectivity. For details, see ref 2.
[15] a) M. Anada, N. Watanabe, S. Hashimoto, Chem. Commun. 1998, 1517-
1518; b) S. Kitagaki, M. Anada, O. Kataoka, K. Matsuno, C. Umeda, N.
Watanabe, S. Hashimoto, J. Am. Chem. Soc. 1999, 121, 1417-1418; c)
M. Yamawaki, H. Tsutsui, S. Kitagaki, M. Anada, S. Hashimoto,
Tetrahedron Lett. 2002, 43, 9561–9564.
[8]
a) B. Morandi, E. M. Carreira, Angew. Chem. Int. Ed. 2010, 49, 4294-
296; Angew. Chem. 2010, 122, 4390-4392; For two other examples,
4
see: b) D. Gladow, S. Doniz-Kettenmann, H.-U. Reissig, Helv. Chim.
Acta 2014, 97, 808-821; c) R. Barroso, A. Jimenez, M. C. Perez-Aguilar,
M.-P. Cabal, C. Valdes, Chem. Commun. 2016, 52, 3677-3680.
[16] CCDC 1934783 (2d), 1934959 (5), and 1934966 (6) contain the
supplementary crystallographic data for this paper. These data can be
obtained free of charge from The Cambridge Crystallographic Data
[9]
a) O. O. Grygorenko, O. S. Artamonov, I. V. Komarov, P. K. Mykhailiuk,
Tetrahedron 2011, 67, 803-823; b) D. Qiu, M. Qiu, R. Ma, Y. Zhang, J.
Wang, Acta Chim. Sinica 2016, 74, 472-487; c) L. Mertens, R. M.
Koenigs, Org. Biomol. Chem. 2016, 14, 10547-10556; d) M. Bos, T.
Poisson, X. Pannecoucke, A. B. Charette, P. Jubault, Chem. Eur. J. 2017,
2 2
Centre. HF CCHN was also employed to react with 1-phenyl-1-propyne
1a under otherwise identical reaction conditions, but resulted in the
formation of desired product 2a in trace amount (<10% yield) with only
30% ee.
2
9
6
3, 4950-4961; e) X. Wang, X. Wang, J. Wang, Tetrahedron 2019, 75,
49-964; f) P. K. Mykhailiuk, R. M. Koenigs, Chem. Eur. J. 2019, 25,
053-6063.
[17] Two terminal alkynes (phenyl acetylene and 4-phenyl-1-butyne) have
been evaluated in this reaction under otherwise identical conditions. In
the case of 4-phenyl-1-butyne, the desired cyclopropene 2aq was
obtained in 70% yield, but with no enantioselectivity. No desired
cyclopropene was observed when phenyl acetylene was employed
(unidentified complex mixtures).
[
10] There is no reported study of enantioselective reactions with CF
2
HCHN
2
until now. For reported catalytic enantioselective reactions with CF
3
CHN ,
2
see: a) B. Morandi, B. Mariampillai, E. M. Carreira, Angew. Chem. Int.
Ed. 2011, 50, 1101-1104; Angew. Chem. 2011, 123, 1133-1136; b) Z.
Chai, J.-P. Bouillon, D. Cahard, Chem. Commun. 2012, 48, 9471-9473;
c) H.-Y. Xiong, Z.-Y. Yang, Z. Chen, J.-L. Zeng, J. Nie, J.-A. Ma, Chem.
Eur. J. 2014, 20, 8325-8329; d) A. Finoco, V. Steck, V. Tyagi, R. Fasan,
J. Am. Chem. Soc. 2017, 139, 5293-5296; e) M. Kotozaki, S.
Chanthamath, T. Fujii, K. Shibatomi, S. Iwasa, Chem. Commun. 2018,
[18] a) W. Xu, Q.-Y. Chen, J. Org. Chem. 2002, 67, 9421-9427; b) S.
Chuprakov, M. Rubin, V. Gevorgyan, J. Am. Chem. Soc. 2005, 127,
3714–3715.
[19] M. K. Pallerla, J. M. Fox, Org. Lett. 2005, 7, 3593-3595.
[20] For previous computational mechanistic studies on carbene reactions
with chiral rhodium(II) carboxylate catalysts, see: a) K. C. Brown, T.
Kodadek, J. Am. Chem. Soc. 1992, 114, 8336–6563; b) J. Hansen, J.
Autschbach, H. M. L. Davies, J. Org. Chem. 2009, 74, 6555–6563; c) A.
DeAngelis, O. Dmitrenko, G. P. A. Yap, J. M. Fox, J. Am. Chem. Soc.
2009, 131, 7230-7231; d) V. N. G. Lindsay, W. Lin, A. B. Charette, J. Am.
Chem. Soc. 2009, 131, 16383-16385; e) J. F. Berry, Dalton Trans. 2012,
41, 700–713; f) D. T. Nowlan III, T. M. Gregg, H. M. L. Davies, D. A.
Singleton, J. Am. Chem. Soc. 2013, 135, 15902-15911; g) Y.-S. Xue, Y.-
P. Cai, Z.-X. Chen, RSC Adv. 2015, 5, 57781–57791; h) A. Pons, V.
Tognetti, L. Joubert, T. Poisson, X. Pannecoucke, A. B. Charette, P.
Jubault, ACS Catal. 2019, 9, 2594−2598.
54, 5110-5113; f) M.-Y. Rong, L. Yang, J. Nie, F.-G. Zhang, J.-A. Ma,
Org. Lett. 2019, 21, 4280-4283; g) J. Zhang, X. Huang, R. K. Zhang, F.
H. Arnold, J. Am. Chem. Soc. 2019, 141, 9798-9802.
[
11] a) C.-B. Liu, W. Meng, F. Li, S. Wang, J. Nie, J.-A. Ma, Angew. Chem.
Int. Ed. 2012, 51, 6227-6230; Angew. Chem. 2012, 124, 6331-6334; b)
A.-J. Cai, Y. Zheng, J.-A. Ma, Chem. Commun. 2015, 51, 8946-8949; c)
S. Wang, J. Nie, Y. Zheng, J.-A. Ma, Org. Lett. 2014, 16, 1606-1609; d)
S. Li, W.-J. Cao, J.-A. Ma, Synlett 2017, 28, 673-678; e) F.-G. Zhang, N.
Lv, Y. Zheng, J.-A. Ma, Chin. J. Chem. 2018, 36, 723-730.
[
12] The preparation of the diazo reagent PS-DFA was shown in the bottom
of Table 1, including sulfidation of ethyl bromodifluoroacetatesulfidation,
reduction of ester, oxidation of sulfide, amination, and diazotization, with
a total yield of 62%. For experimental details and our previous studies,
see: a) J.-L. Zeng, Z. Chen, F.-G. Zhang, J.-A. Ma, Org. Lett. 2018, 20,
[21] a) R. G. Parr, W. Yang, Density Functional Theory of Atoms and
Molecules, Oxford University Press, Oxford, 1994; b) W. Koch, M. C.
Holthausen, A Chemist’s Guide to Density Functional Theory, Wiley-
VCH, Weinheim, 2001.
4
562-4565; b) J.-A. Ma, J.-L. Zeng, F.-G. Zhang, China Patent CN
08383761A, 2018; c) X. Peng, M.-Y. Xiao, J.-L. Zeng, F.-G. Zhang, J.-
[22] See the supporting information (SI) for calculation details. Noncovalent
interaction (NCI) analysis on TS2 and TS2’ has also been conducted. As
shown in Scheme S2 in the SI, the NCIPLOT suggests a steric repulsion
between the aryl group of the alkyne and the tetrachlorophthalimido
group in transition state TS2’. Therefore, the enantioselectivity is
assumed to be mainly controlled by the steric effect of the alkyne-
insertion step, which is in line with the proposed stereo-control model in
Scheme 5b.
1
A. Ma, Org. Lett. 2019, 21, 4808−4811; d) J.-L. Zeng, Y. Zhang, M.-M.
Zheng, Z.-Q. Zhang, X.-S. Xue, F.-G. Zhang, J.-A. Ma, Org. Lett. 2019,
2
1, DOI: 10.1021/acs.orglett.9b02989.
13] C. G. Espino, K. W. Fiori, M. Kim, J. Du Bois, J. Am. Chem. Soc. 2004,
26, 15378–15379.
[
[
1
14] H. L. M. Davies, P. R. Bruzinski, D. H. Lake, N. Kong, M. J. Fall, J. Am.
Chem. Soc. 1996, 116, 6897–6907.
This article is protected by copyright. All rights reserved.