3 M. Meldal and C. W. Tornoe, Chem. Rev., 2008, 108, 2952;
P. Wu and V. V. Fokin, Aldrichimica Acta, 2007, 40, 7.
4 H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem., Int.
Ed., 2001, 40, 2004.
5 P. Mathew, A. Neels and M. Albrecht, J. Am. Chem. Soc., 2008,
130, 13534; T. Karthikeyan and S. Sankararaman, Tetrahedron
Lett., 2009, 50, 5834.
6 J. D. Crowley and P. H. Bandeen, Dalton Trans., 2010, 39, 612;
J. D. Crowley, P. H. Bandeen and L. R. Hanton, Polyhedron, 2010,
29, 70; J. D. Crowley and E. L. Gavey, Dalton Trans., 2010, 39,
4035; M. L. Gower and J. D. Crowley, Dalton Trans., 2010, 39,
2371.
7 For a review of ‘‘abnormal carbenes’’ see: O. Schuster, L. Yang,
H. G. Raubenheimer and M. Albrecht, Chem. Rev., 2009, 109,
3445. Recently, 1,2,3-triazolylidenes have also been termed
‘‘mesoionic carbenes’’, see: G. Guisado-Barrios, J. Bouffard,
B. Donnadieu and G. Bertrand, Angew. Chem., Int. Ed., 2010,
49, 4759.
8 B. Schulze, C. Friebe, M. D. Hager, W. Guenther, U. Koehn,
B. O. Jahn, H. Goerls and U. S. Schubert, Org. Lett., 2010, 12,
2710; K. M. Mullen, J. Mercurio, C. J. Serpell and P. D. Beer,
Angew. Chem., Int. Ed., 2009, 48, 4781.
9 C. Dash, M. M. Shaikh, R. J. Butcher and P. Ghosh, Inorg. Chem.,
2010, 49, 4972; P. De Fremont, N. M. Scott, E. D. Stevens and
S. P. Nolan, Organometallics, 2005, 24, 2411.
10 P. de Fremont, N. Marion and S. P. Nolan, J. Organomet. Chem.,
2009, 694, 551; J. Y. Z. Chiou, S. C. Luo, W. C. You,
A. Bhattacharyya, C. S. Vasam, C. H. Huang and I. J. B. Lin,
Eur. J. Inorg. Chem., 2009, 1950.
11 A. Rit, T. Pape and F. E. Hahn, J. Am. Chem. Soc., 2010, 132,
4572; F. E. Hahn, C. Radloff, T. Pape and A. Hepp, Chem.–Eur.
J., 2008, 14, 10900–10904; F. E. Hahn, C. Radloff, T. Pape and
A. Hepp, Organometallics, 2008, 27, 6408–6410; C. Radloff,
J. J. Weigand and F. E. Hahn, Dalton Trans., 2009, 9392–9394.
12 A. Pastor and E. Martinez-Viviente, Coord. Chem. Rev., 2008, 252,
2314.
13 Z. G. Li, C. Brouwer and C. He, Chem. Rev., 2008, 108, 3239;
D. J. Gorin, B. D. Sherry and F. D. Toste, Chem. Rev., 2008, 108,
3351; H. C. Shen, Tetrahedron, 2008, 64, 3885; H. C. Shen, Tetra-
hedron, 2008, 64, 7847; A. S. K. Hashmi, Chem. Rev., 2007, 107, 3180.
14 N. Marion and S. P. Nolan, Chem. Soc. Rev., 2008, 37, 1776;
H. G. Raubenheimer and S. Cronje, Chem. Soc. Rev., 2008, 37,
1998; M. S. Hadfield and A.-L. Lee, Org. Lett., 2010, 12, 484;
J. T. Bauer, M. S. Hadfield and A.-L. Lee, Chem. Commun., 2008,
6405.
Scheme 4 Cycloisomerisation and methoxycyclisation of enyne 15,
catalysed by complex 3/AgSbF6.
Following our successful preliminary results with the
unmodified parent gold(I)–1,2,3-triazolylidene complex 3, we
envisage that the easy access to analogues of 3 via the CuAAC
‘‘click’’ reaction should now open the door to ready and rapid
tuning of the steric and electronic properties of gold(I)-pre-
catalysts via modification of the substituents. Since the nature
of the ancillary ligand can greatly affect the reactivity and
selectivity of the gold(I)-catalysts, analogues of complex 3 with
different electronic and steric properties could be beneficial to
the development and optimisation of gold(I)-catalysed reactions.
Work is currently underway in this area and will be reported in
due course.
In conclusion, we have reported the synthesis and character-
isation of novel gold(I) ‘‘click’’ carbene complexes. These
complexes have been used for the self-assembly of a metallo-
macrocycle and as precatalysts for gold(I)-catalysed reactions.
Exploitation of the CuAAC methodology used to generate the
carbene ligands should provide the ability to readily and
rapidly tune the steric, electronic and functional properties
of the resulting gold(I)–1,2,3-triazolylidene complexes potentially
enabling the generation of new catalysts, medicines and
materials.
We would like to thank Erasmus (USDP), EPSRC, The
Royal Society, Heriot-Watt University and the University of
Otago for providing financial support for this work. Bevan
Jarman (University of Waikato) and the EPSRC Mass
Spectrometry services at Swansea are thanked for collecting
MS data.
15 M. R. Fructos, T. R. Belderrain, P. de Fremont, N. M. Scott,
S. P. Nolan, M. M. Diaz-Requejo and P. J. Perez, Angew. Chem.,
Int. Ed., 2005, 44, 5284; L. Ricard and F. Gagozs, Organometallics,
2007, 26, 4704; P. de Fremont, E. D. Stevens, M. R. Fructos,
M. Mar Diaz-Requejo, P. J. Perez and S. P. Nolan, Chem.
Commun., 2006, 2045.
16 A. Prieto, M. R. Fructos, M. M. Diaz-Requejo, P. J. Perez,
P. Perez-Galan, N. Delpont and A. M. Echavarren, Tetrahedron,
2009, 65, 1790.
17 The selectivity is comparable with reports using [IPrAu(NCMe)]BF4:
M. R. Fructos, M. M. Diaz-Requejo and P. J. Perez, Chem.
Commun., 2009, 5153.
18 C. Bartolome, Z. Ramiro, D. Garcia-Cuadrado, P. Perez-Galan,
M. Raducan, C. Bour, A. M. Echavarren and P. Espinet, Organo-
metallics, 2010, 29, 951; C. Nieto-Oberhuber, M. R. Munoz,
S. Lopez, E. Jemenez-Nunez, C. Nevado, E. Herrero-Gomez,
M. Raducan and A. M. Echavarren, Chem.–Eur. J., 2008, 14, 5096.
Notes and references
1 For recent reviews see: L. Mercs and M. Albrecht, Chem. Soc.
Rev., 2010, 39, 1903; S. Diez-Gonzalez, N. Marion and
S. P. Nolan, Chem. Rev., 2009, 109, 3612; J. C. Y. Lin,
R. T. W. Huang, C. S. Lee, A. Bhattacharyya, W. S. Hwang and
I. J. B. Lin, Chem. Rev., 2009, 109, 3561.
2 F. E. Hahn and M. C. Jahnke, Angew. Chem., Int. Ed., 2008, 47,
3122; O. Kuehl, Chem. Soc. Rev., 2007, 36, 592.
c
330 Chem. Commun., 2011, 47, 328–330
This journal is The Royal Society of Chemistry 2011