For further confirming apoptosis regulated by T cells, we
analyzed cytokine production of T cell or N3-T cells separately
in response to Raji cells or BCN-Raji cells (Figure 4f–h). As
shown in Figure 4f–h, N3-T cells can effectively recognize BCN-
Raji cells and produce effector cytokines including interleukin-2
(IL-2), tumor necrosis factor-α (TNF-α), and interferon-γ
(IFN-γ). With the increase of the concentration of Ac4ManN-
BCN treated Raji cells, the antitumor cytokines secretion was
significantly enhanced in N3-T cells, indicating that bio-orthog-
onal reaction over cell surface can effectively improve the recog-
nition and activation of T cells toward tumor cells, which might
be the important reason that cause the enhanced tumor toxicity
for T cells after modification.
In conclusion, the BCN modified unnatural sugars,
especially for Ac4ManN-BCN, can be efficiently and
nondestructively incorporated into wild tumor cell surface
glycans. The BCN motif on cell surface exhibited an excellent
bio-orthogonal targeting tag with rapid reaction rate, which
might enlarge the application of biodiagnostic and therapeutic
approaches. Furthermore, in conjunction with the highly effi-
cient and specific bio-orthogonal reaction, Ac4GalNAz treated
T cells presented remarkable high-efficiency targeting and
enhanced cytotoxicity against BCN-labeled tumor cells, even
showing equal cytotoxicity with CAR-T cells against BCN-Raji
cell. It suggested that T cell with robust metabolic modifica-
tion can effectively kill tumor cells and will provide a rapid and
valid therapeutic method of tumor. Such universal bio-orthog-
onal T cell targeting strategy might pave a way to improve
T cell therapies for cell targeting and tumor infiltrating, and
provide a brand-new strategy for cell immunotherapy and
solid tumor therapy.
Keywords
bio-orthogonal glycometabolic labeling, click chemistry, cytotoxicity,
T cell targeting, T cell therapy
Received: October 21, 2018
Revised: December 2, 2018
Published online:
[1] a) E. N. Baruch, A. L. Berg, M. J. Besser, J. Schachter, G. Markel,
Cancer 2017, 123, 2154; b) C. S. Hinrichs, S. A. Rosenberg, Immunol.
Rev. 2014, 257, 56; c) C. H. Lamers, S. Sleijfer, S. van Steenbergen,
P. van Elzakker, B. van Krimpen, C. Groot, A. Vulto, M. den Bakker,
E. Oosterwijk, R. Debets, J. W. Gratama, Mol. Ther. 2013, 21, 904.
[2] a) N. L. Komarova, A. V. Sadovsky, F. Y. Wan, J. R. Soc., Interface
2008, 5, 105; b) L. N. Kwong, L. Zou, S. Chagani, C. S. Pedamallu,
M. Liu, S. Jiang, A. Protopopov, J. Zhang, G. Getz, L. Chin, Cell Rep.
2017, 19, 1304.
[3] a) L. Galluzzi, A. Buque, O. Kepp, L. Zitvogel, G. Kroemer,
Nat. Rev. Immunol. 2017, 17, 97; b) M. H. Kershaw, J. A. Westwood,
P. K. Darcy, Nat. Rev. Cancer 2013, 13, 525; c) P. Sharma,
J. P. Allison, Science 2015, 348, 56.
[4] a) H. J. Jackson, S. Rafiq, R. J. Brentjens, Nat. Rev. Clin. Oncol. 2016, 13,
370; b) D. M. Barrett, S. A. Grupp, C. H. June, J. Immunol. 2015, 195, 755.
[5] a) H. Almasbak, T. Aarvak, M. C. Vemuri, J.Immunol. Res. 2016,
2016, 1; b) S. A. Rosenberg, N. P. Restifo, Science 2015, 348, 62.
[6] J. C. Roth, D. T. Curiel, L. Pereboeva, Gene Ther. 2008, 15, 716.
[7] R. Xie, S. Hong, X. Chen, Curr. Opin. Chem. Biol. 2013, 17, 747.
[8] C. R. Bertozzi, Acc. Chem. Res. 2011, 44, 651.
[9] a) J. M. Baskin, J. A. Prescher, S. T. Laughlin, N. J. Agard,
P. V. Chang, I. A. Miller, A. Lo, J. A. Codelli, C. R. Bertozzi, Proc. Natl.
Acad. Sci. U. S. A. 2007, 104, 16793; b) J. A. Prescher, C. R. Bertozzi,
Nat. Chem. Biol. 2005, 1, 13.
[10] S. T. Laughlin, N. J. Agard, J. M. Baskin, I. S. Carrico, P. V. Chang,
A. S. Ganguli, M. J. Hangauer, A. Lo, J. A. Prescher, C. R. Bertozzi,
Methods Enzymol. 2006, 415, 230.
Supporting Information
Supporting Information is available from the Wiley Online Library or
from the author.
[11] a) H. Koo, S. Lee, J. H. Na, S. H. Kim, S. K. Hahn, K. Choi,
I. C. Kwon, S. Y. Jeong, K. Kim, Angew. Chem., Int. Ed. 2012, 51,
11836; b) H. Y. Yoon, M. L. Shin, M. K. Shim, S. Lee, J. H. Na,
H. Koo, H. Lee, J. H. Kim, K. Y. Lee, K. Kim, I. C. Kwon, Mol. Phar-
maceutics 2017, 14, 1558; c) H. Wang, R. Wang, K. Cai, H. He,
Y. Liu, J. Yen, Z. Wang, M. Xu, Y. Sun, X. Zhou, Q. Yin, L. Tang,
I. T. Dobrucki, L. W. Dobrucki, E. J. Chaney, S. A. Boppart, T. M. Fan,
S. Lezmi, X. Chen, L. Yin, J. Cheng, Nat. Chem. Biol. 2017, 13, 415.
[12] L. Tang, Q. Yin, Y. Xu, Q. Zhou, K. Cai, J. Yen, L. W. Dobrucki,
J. Cheng, Chem. Sci. 2015, 6, 2182.
[13] a) H. Koo, M. Choi, E. Kim, S. K. Hahn, R. Weissleder, S. H. Yun,
Small 2015, 11, 6458; b) R. Xie, L. Dong, Y. Du, Y. Zhu, R. Hua,
C. Zhang, X. Chen, Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 5173.
[14] S. F. van Dongen, P. Maiuri, E. Marie, C. Tribet, M. Piel, Adv. Mater.
2013, 25, 1687.
Acknowledgements
W.L. and H.P. contributed equally to this work. The authors gratefully
acknowledge funding support from the National Natural Science
Foundation of China (Grant No. 81601552, 31571013), Guangdong Natural
Science Foundation of Research Team (2016A030312006), Shenzhen
Science and Technology Innovation Commission (JCYJ20170818154843625,
JCYJ2017081816373945, JSGG20160331185422390, JCYJ20160429191503002,
JCYJ20150403091443298, KQCX20140521115045447, JCYJ20150521094519473),
and the SIAT Innovation Program for Excellent Young Researchers (201506).
The PBMCs were provided by the Yan Jin group. The corresponding human
experiments conform to the ethics of the Institutional Review Board of SIAT
(serial number: SIAT-IRB-170315-H0145).
[15] a) J. Dommerholt, S. Schmidt, R. Temming, L. J. Hendriks,
F. P. Rutjes, J. C. van Hest, D. J. Lefeber, P. Friedl, F. L. van Delft,
Angew. Chem., Int. Ed. 2010, 49, 9422; b) T. Kawase, T. Fujiwara,
C. Kitamura, A. Konishi, Y. Hirao, K. Matsumoto, H. Kurata,
T. Kubo, S. Shinamura, H. Mori, E. Miyazaki, K. Takimiya,
Angew. Chem., Int. Ed. 2010, 49, 7728.
Conflict of Interest
The authors declare no conflict of interest.
©
Small 2018, 1804383
1804383 (6 of 6)
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim