ChemComm
Communication
confirmed that the crystallinity was maintained in the VO@Py-
2,3-DHPh COF. The N2 sorption curves (Fig. 2E) revealed micro-
porous characteristics, whereas the BET surface area was evaluated
to be 1048 m2 gꢀ1 (Fig. 2F). The pore volume was evaluated to be
1.16 cm3 gꢀ1 (Fig. S8B, ESI†). The VO@Py-2,3-DHPh COF consists
of only one kind of micropore with a size of 1.82 nm (Fig. S8B,
ESI†). Interestingly, the absorption band was broadened to longer
wavelength with the peak maximum red-shifted from 458 to
468 nm (Fig. S8C and D, ESI†). This is caused by the coordination
of VQO to the edge units of the COFs. The VO@ Py-2,3-DHPh COF
samples are stable in various solvents and are thermally stable up
to 300 1C (Fig. S9, ESI†). Because VQO sites are well-established
catalytic centers,10 the VO@Py-2,3-DHPh COF with dense VQO
units confined within the open channels constitutes an intriguing
heterogeneous catalytic system worthy of further investigation.
In summary, we have developed a general strategy for the
construction of a new class of COFs that offer open docking sites
on the channel walls. These COFs feature ordered alignment of
binding sites and predesignable skeletons. Metallation converts
the open frameworks into supramolecular COFs with dense and
aligned catalytic VQO sites confined within the nanochannels.
These remarkable results open a way to supramolecular architecture
based on crystalline open structures of COFs.
Fig. 2 Nitrogen sorption isotherms of (A) Py-DHPh COF, (B) Py-2,3-DHPh
COF, (C) Py-2,20-BPyPh COF, (D) Py-3,30-BPyPh COF and (E) VO@Py-2,3-
DHPh COF measured at 77 K. (F) BET surface areas of the COFs (from left
to right, the bars correspond to the Py-DHPh COF, Py-2,3-DHPh COF, Py-2,20-
BPyPh COF, Py-3,30-BPyPh COF and VO@Py-2,3-DHPh COF).
Imine linkage constitutes one type of conjugation bond, how
the docking sites affect the p conjugation of COFs and thus their p
electronic properties is an interesting point to be elucidated. We
conducted solid-state absorption spectroscopy to evaluate the
absorption bands of COFs. The Py-DHPh COF, Py-2,3-DHPh
COF, Py-2,20-BPyPh COF, and Py-3,30-BPyPh COF exhibited absorp-
tion bands at 469, 458, 442 and 445 nm, respectively (Fig. S7, ESI†),
which were 53, 42, 26 and 29 nm redshifted in comparison with
the PyTTA monomer (416 nm). These results indicate an extended
p conjugation over the 2D sheet of the COFs. The difference in the
redshift suggests that the edge units with different docking sites
can perturb the conjugation status. The docking sites with phenol
groups prefer a planar sheet conformation that promotes p conju-
gation, whereas the docking sites with bipyridine units cause a
twisted conformation of the 2D sheets and trigger pyridine nitrogen
induced p–p overlap that localizes the p clouds.
To demonstrate the potential of these crystalline COFs as scaffolds
for the supramolecular construction, we conducted additional experi-
ments. We chose the Py-2,3-DHPh COF as a scaffold and metallated
the catechol groups with vanadium(IV)-oxy acetylacetonate [VO(acac)2]
(Scheme 2 and ESI†). Treatment of the Py-2,3-DHPh COF sample
having a BET surface area of 1432 m2 gꢀ1 with VO(acac)2 in THF at
50 1C for 24 h caused a clear color change from red to black and led
to quantitative isolation of VO@Py-2,3-DHPh COF. The resulting
VO@Py-2,3-DHPh COF consists of VQO groups on the channel walls
with an almost quantitative conversion (0.96 VQO/catechol in molar
ratio), as determined by inductively coupled plasma atomic emission
spectroscopy analysis (ESI†). The XRD patterns (Fig. S8A, ESI†)
This work was supported by a Grant-in-Aid for Scientific
Research (A) (24245030) from MEXT, Japan.
Notes and references
1 X. Feng, X. Ding and D. Jiang, Chem. Soc. Rev., 2012, 41, 6010–6022.
2 (a) S. Wan, J. Guo, J. Kim, H. Ihee and D. Jiang, Angew. Chem.,
Int. Ed., 2008, 47, 8826–8830; (b) S. Dalapati, S. Jin, J. Gao, Y. Xu,
A. Nagai and D. Jiang, J. Am. Chem. Soc., 2013, 135, 17310–17313.
3 (a) X. Feng, L. Liu, Y. Honsho, A. Saeki, S. Seki, S. Irle, Y. P. Dong,
A. Nagai and D. Jiang, Angew. Chem., Int. Ed., 2012, 51, 2618–2622;
(b) M. Dogru, M. Handloser, F. Auras, T. Kunz, D. Medina, A. Hartschuh,
P. Knochei and T. Bein, Angew. Chem., Int. Ed., 2013, 52, 2920–2924.
4 (a) S. Y. Ding, J. Gao, Q. Wang, Y. Zhang, W. G. Song, C. Y. Su and W. Wang,
J. Am. Chem. Soc., 2011, 133, 19816–19822; (b) H. Xu, X. Chen, J. Gao, J. Lin,
M. Addicoat, S. Irle and D. Jiang, Chem. Commun., 2014, 47, 1292–1294.
5 (a) S. Wan, F. Gndara, A. Asano, H. Furukawa, A. Saeki, S. K. Dey, L. Liao,
M. W. Ambrogio, Y. Y. Botros, X. Duan, S. Seki, J. F. Stoddart and
O. M. Yaghi, Chem. Mater., 2011, 23, 4094–4097; (b) X. Feng, L. Chen,
Y. Honsho, O. Saengsawang, L. Liu, L. Wang, A. Saeki, S. Irle, S. Seki,
Y. Dong and D. Jiang, Adv. Mater., 2012, 24, 3026–3031.
6 S. Jin, X. Ding, X. Feng, M. Supur, K. Furukawa, S. Takahashi,
M. Addicoat, M. E. El-Khouly, T. Nakamura, S. Irle, S. Fukuzumi,
A. Nagai and D. Jiang, Angew. Chem., Int. Ed., 2013, 52, 2017–2021.
7 J. Guo, Y. Xu, S. Jin, L. Chen, T. Kaji, Y. Honsho, M. Addicoat, J. Kim,
A. Saeki, H. Ihee, S. Seki, S. Irle, M. Hiramoto, J. Gao and D. Jiang,
Nat. Commun., 2013, 4, 2736, DOI: 10.1038/ncomms3736.
¨
8 (a) F. J. Uribe-Romo, J. R. Hunt, H. Furukawa, C. Klock, M. O’Keeffe and
O. M. Yaghi, J. Am. Chem. Soc., 2009, 131, 4570–4571; (b) X. Chen,
M. Addicoat, S. Irle, A. Nagai and D. Jiang, J. Am. Chem. Soc., 2013, 135,
546–549; (c) S. Kandambeth, D. B. Shinde, M. K. Panda, B. Lukose,
T. Heine and R. Banerjee, Angew. Chem., Int. Ed., 2013, 52, 13052–13056;
(d) M. G. Rabbani, A. K. Sekizkardes, Z. Kahveci, T. E. Reich, R. Ding and
H. M. El-Kaderi, Chem. – Eur. J., 2013, 19, 3324–3328; (e) Y. Zhang, J. Su,
´
H. Furukawa, Y. Yun, F. Gandara, A. Duong, X. Zou and O. M. Yaghi,
J. Am. Chem. Soc., 2013, 135, 16336–16339; ( f ) W. Huang, Y. Jiang, X. Li,
X. Li, J. Wang, Q. Wu and X. Liu, ACS Appl. Mater. Interfaces, 2013, 5,
8845–8849; (g) D. N. Bunck and W. R. Dichtel, Chem. Commun., 2013, 49,
2457–2459; (h) P. Kuhn, M. Antonietti and A. Thomas, Angew. Chem., Int.
Ed., 2008, 47, 3450–3453.
9 K. M. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti,
J. Rouquerol and T. Siemieniewska, Pure Appl. Chem., 1985, 57, 603–619.
10 K. Nomura and S. Zhang, Chem. Rev., 2011, 111, 2342–2362.
Scheme 2 Synthesis of the VO@Py-2,3-DHPh COF.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 6161--6163 | 6163