ARTICLES
a
Data aꢀailability. All data and any associated accession codes and
references are available in the online version of this paper.
34
1
33
2
Received 12 October 2016; accepted 15 June 2017;
published online 31 July 2017
References
1
.
Kaysser, L. et al. Merochlorins A–D, cyclic meroterpenoid antibiotics
biosynthesized in divergent pathways with vanadium-dependent
chloroperoxidases. J. Am. Chem. Soc. 134, 11988–11991 (2012).
Wu, Z. et al. Antibacterial and cytotoxic new napyradiomycins from the marine-
derived Streptomyces sp. SCSIO 10428. Mar. Drugs 11, 2113–2125 (2013).
2
.
VII
VI
3. Cheng, Y.-B., Jensen, P. R. & Fenical, W. Cytotoxic and antimicrobial
napyradiomycins from two marine-derived Streptomyces strains. Eur. J. Org.
Chem. 2013, 3751–3757 (2013).
V
IV
4.
Shiomi, K. et al. Novel antibiotics napyradiomycins. Production, isolation,
physico-chemical properties and biological activity. J. Antibiot.
39, 487–493 (1986).
III
II
I
5. Haste, N. M. et al. Bactericidal kinetics of marine-derived napyradiomycins
against contemporary methicillin-resistant Staphylococcus aureus. Mar. Drugs 9,
680–689 (2011).
12
14
16
18
20
22
24
Time (min)
6. Soria-Mercado, I. E., Prieto-Davó, A., Jensen, P. R. & Fenical, W. Antibiotic
terpenoid chloro-dihydroquinones from a new marine actinomycete. J. Nat.
Prod. 68, 904–910 (2005).
b
7
.
Farnaes, L. et al. Napyradiomycin derivatives, produced by a marine-derived
actinomycete, illustrate cytotoxicity by induction of apoptosis. J. Nat. Prod. 77,
15–21 (2014).
Shin-ya, K. et al. Isolation and structural elucidation of an antioxidative agent,
naphterpin. J. Antibiot. 43, 444–447 (1990).
HO
O
HO
O
Cl
O
Cl
NapH3
8.
D-hydroxyketone
rearrangement
HO
HO
OH
OH
9. Izumikawa, M., Nagai, A., Hashimoto, J., Takagi, M. & Shin-ya, K. Isolation of 2
new naphthablin analogs, JBIR-79 and JBIR-80, from Streptomyces sp. RI24.
J. Antibiot. 63, 729–731 (2010).
O
10. Heide, L. Prenyl transfer to aromatic substrates: genetics and enzymology. Curr.
Opin. Chem. Biol. 13, 171–179 (2009).
33
Naphthomevalin (1)
1
1. Tello, M., Kuzuyama, T., Heide, L., Noel, J. P. & Richard, S. B. The ABBA family
of aromatic prenyltransferases: broadening natural product diversity. Cell. Mol.
Life Sci. 65, 1459–1463 (2008).
Chlorination/
NapH1
NapT8 Prenylation
cyclization
12. Bach, T. J. & Rohmer, M. Isoprenoid Synthesis in Plants and Microorganisms:
New Concepts and Experimental Approaches (Springer, 2012).
13. Matsuda, Y. & Abe, I. Biosynthesis of fungal meroterpenoids. Nat. Prod. Rep. 33,
26–53 (2015).
4. Xu, Z., Baunach, M., Ding, L. & Hertweck, C. Bacterial synthesis of diverse
indole terpene alkaloids by an unparalleled cyclization sequence. Angew. Chem.
Int. Ed. 51, 10293–10297 (2012).
5. Yamada, Y. et al. Terpene synthases are widely distributed in bacteria. Proc. Natl
Acad. Sci. USA 112, 857–862 (2015).
HO
OH
HO
O
O
Cl
O
Cl
Cl
1
HO
HO
O
OH
1
1
6. Baunach, M., Franke, J. & Hertweck, C. Terpenoid biosynthesis off the beaten
track: unconventional cyclases and their impact on biomimetic synthesis. Angew.
Chem. Int. Ed. 54, 2604–2626 (2014).
34
Napyradiomycin A1 (2)
1
7. Henkel, T. & Zeeck, A. Secondary metabolites by chemical screening, 15.
Structure and absolute configuration of naphthomevalin, a new dihydro-
naphthoquinone antibiotic from Streptomyces sp. J. Antibiot.
Figure 6 | NapT8-, NapH3- and NapH1-coupled assays with synthetic 34.
a, Reversed-phase HPLC chromatogram (254 nm) of the standard reaction
of racemic 34 with: I, no enzyme (control); II, NapT8; IV, NapT8 then
NapH3; VI, NapT8, then NapH3, then NapH1; and in addition to standard
compounds: III, 33; V, naphthomevalin (1); VII, napyradiomycin A1 (2)
44, 665–669 (1991).
18. Shiomi, K. et al. New antibiotic napyradiomycins A2 and B4 and
stereochemistry of napyradiomycins. J. Antibiot. 40, 1213–1219 (1987).
19. Shiomi, K. et al. Structures of new antibiotics: napyradiomycins. J. Antibiot. 39,
94–501 (1986).
(Supplementary Figs 4–6 give the complete ultraviolet/visible light and mass
4
spectrometry characterizations and Supplementary Information gives the
assay details). As evidenced through the in vitro assays on isolated reaction
products, the sequential actions of NapT8, NapH3 and NapH1 are required
for the formation of napyradiomycin A1 (2) from the synthetic substrate 34.
b, Schematic of the pathway from 34 to napyradiomycin A1 (2). The
pathway also proceeds through an α-hydroxyketone rearrangement of a
substrate that possesses disubstitution at C2, which parallels the reaction
catalysed by Mcl24.
2
0. Kalaitzis, J. A., Hamano, Y., Nilsen, G. & Moore, B. S. Biosynthesis and structural
revision of neomarinone. Org. Lett. 5, 4449–4452 (2003).
21. Shin-ya, K., Furihata, K., Hayakawa, Y. & Seto, H. Biosynthetic studies of naphterpin,
a terpenoid metabolite of Streptomyces. Tetrahedron Lett. 31, 6025–6026 (1990).
22. Pepper, H. & George, J. The biosynthesis and biomimetic synthesis of
merochlorins A and B. Synlett 26, 2485–2490 (2015).
23. Funayama, S., Ishibashi, M., Komiyama, K. & Omura, S. Biosynthesis of
furaquinocins A and B. J. Org. Chem. 55, 1132–1133 (2002).
24. Funa, N. et al. A new pathway for polyketide synthesis in microorganisms.
Nature 400, 897–899 (1999).
2
5. Kuzuyama, T., Noel, J. P. & Richard, S. B. Structural basis for the promiscuous
biosynthetic prenylation of aromatic natural products. Nature 435, 983–987 (2005).
6. Kumano, T., Tomita, T., Nishiyama, M. & Kuzuyama, T. Functional
characterization of the promiscuous prenyltransferase responsible for
furaquinocin biosynthesis: identification of a physiological polyketide substrate
and its prenylated reaction products. J. Biol. Chem. 285, 39663–39671 (2010).
7. Leipoldt, F. et al. Diversity of ABBA prenyltransferases in marine Streptomyces
sp. CNQ-509: promiscuous enzymes for the biosynthesis of mixed terpenoid
compounds. PLoS ONE 10, e0143237 (2015).
Through our synergistic approach of coordinating synthetic
chemistry with biochemistry, we were able to discover and probe a
novel biosynthetic reaction. Based on the presented results, we
propose a new paradigm for the biosynthesis of an entire class of
natural product compounds. We envision that all bacterial THN-
derived C3-prenylated (class II) meroterpenoids proceed through
an equivalent α-hydroxyketone rearrangement catalysed by a VHPO
homologue, and thereby unify the class I and II meroterpenoid
natural products.
2
2
2
8. Sydor, P. K. et al. Regio- and stereodivergent antibiotic oxidative carbocyclizations
catalysed by Rieske oxygenase-like enzymes. Nat. Chem. 3, 388–392 (2011).
2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
7
©