Journal of the American Chemical Society
Page 4 of 5
Experimental confirmation of the metallic nature of both MOFs
characterization and device fabrication was performed at the Har-
1
2
3
4
5
6
7
8
came from UPS, which informs on the intrinsic properties of even
polycrystalline samples by measuring the density of states near the
Fermi level. Grazing incident wide-angle X-ray scattering
(GIWAXS) of Ni3(HIB)2 and Cu3(HIB)2 films prepared on highly-
doped silicon (Figure S19), as required for UPS measurements,
confirmed the identity of the two MOFs and showed that they pref-
erably orient with a typical face-on packing mode where the 2D
sheets are parallel to the silicon substrate (Figure S20).23 The UPS
measurments at 300 K revealed Fermi edges for both Ni3(HIB)2 and
Cu3(HIB)2 (Figure 4b and S21), which are indicative of electronic
bands crossing the Fermi level, and are strong evidence for metallic
behavior in M3(HIB)2.13,24
vard Center for Nanoscale Systems (CNS), a member of the Na-
tional Nanotechnology Infrastructure Network (NNIN), which is
supported by the National Science Foundation under NSF award
no. ECS-0335765 This work used the Extreme Science and Engi-
neering Discovery Environment (XSEDE), which is supported by
the National Science Foundation grant number ACI-1053575.
REFERENCES
(1) Sun, L.; Campbell, M. G.; Dincă, M. Angew. Chem., Int. Ed. 2016, 55,
3566-3579.
(2) Miner, E. M.; Fukushima, T.; Sheberla, D.; Sun, L.; Surendranath, Y.;
Dincă, M. Nat. Commun. 2016, 7, 10942.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(3) Zhao, S.; Wang, Y.; Dong, J.; He, C.-T.; Yin, H.; An, P.; Zhao, K.;
Zhang, X.; Gao, C.; Zhang, L.; Lv, J.; Wang, J.; Zhang, J.; Khattak, A. M.;
Khan, N. A.; Wei, Z.; Zhang, J.; Liu, S.; Zhao, H.; Tang, Z. Nat. Energy
2016, 1, 16184.
(4) Aubrey, M. L.; Long, J. R. J. Am. Chem. Soc. 2015, 137, 13594-13602.
(5) Zhang, Z.; Yoshikawa, H.; Awaga, K. J. Am. Chem. Soc. 2014, 136,
16112-16115.
(6) Campbell, M. G.; Sheberla, D.; Liu, S. F.; Swager, T. M.; Dincă, M.
Angew. Chem., Int. Ed. 2015, 54, 4349-4352.
(7) Campbell, M. G.; Liu, S. F.; Swager, T. M.; Dincă, M. J. Am. Chem.
Soc. 2015, 137, 13780-13783.
(8) ) Erickson, K. J.; Leonard, F.; Stavila, V.; Foster, M. E.; Spataru, C. D.;
Jones, R. E.; Foley, B. M.; Hopkins, P. E.; Allendorf, M. D.; Talin, A. A.
Adv. Mater. 2015, 27, 3453-3459.
(9) Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C.; Shao-Horn, Y.; Dincă,
M. Nat. Mater. 2017, 16, 220-224.
(10) AlKaabi, K.; Wade, C. R.; Dincă, M. Chem 2016, 1, 264-272.
(11) Wu, G.; Huang, J.; Zang, Y.; He, J.; Xu, G. J. Am. Chem. Soc. 2017,
139, 1360–1363.
(12) Sheberla, D.; Sun, L.; Blood-Forsythe, M. A.; Er, S.; Wade, C. R.;
Brozek, C. K.; Aspuru-Guzik, A.; Dincă, M. J. Am. Chem. Soc. 2014, 136,
8859-8862.
(13) Kambe, T.; Sakamoto, R.; Kusamoto, T.; Pal, T.; Fukui, N.; Hoshiko,
K.; Shimojima, T.; Wang, Z.; Hirahara, T.; Ishizaka, K.; Hasegawa, S.; Liu,
F.; Nishihara, H. J. Am. Chem. Soc. 2014, 136, 14357-14360.
(14) Huang, X.; Sheng, P.; Tu, Z.; Zhang, F.; Wang, J.; Geng, H.; Zou, Y.;
Di, C.-A.; Yi, Y.; Sun, Y.; Xu, W.; Zhu, D. Nat. Commun. 2015, 6, 7408.
(15) Chen, S.; Dai, J.; Zeng, X. C. Phys. Chem. Chem. Phys. 2015, 17, 5954-
5958.
(16) Yamada, M. G.; Soejima, T.; Tsuji, N.; Hirai, D.; Dincă, M.; Aoki, H.
Phys. Rev. B. 2016, 94, 081102.
(17) Wu, M.; Wang, Z.; Liu, J.; Li, W.; Fu, H.; Sun, L.; Liu, X.; Pan, M.;
Weng, H.; Dincă, M.; Fu, L.; Li, J. 2D Mater. 2016, 4, 015015.
(18) Lahiri, N.; Lotfizadeh, N.; Tsuchikawa, R.; Deshpande, V. V.; Louie,
J. J. Am. Chem. Soc. 2017, 139, 19-22.
(19) Chisnell, R.; Helton, J. S.; Freedman, D. E.; Singh, D. K.; Bewley, R.
I.; Nocera, D. G.; Lee, Y. S. Phys. Rev. Lett. 2015, 115, 147201.
(20) Sun, L.; Park, S. S.; Sheberla, D.; Dincă,.M. J. Am. Chem. Soc. 2016,
138, 14772-14782.
(21) Kobayashi, H.; Cui, H.; Kobayashi, A. Chem. Rev. 2004, 104, 5265-
5288.
(22) Beloborodov, I. S.; Lopatin, A. V.; Vinokur, V. M.; Efetov, K. B. Rev.
Mod. Phys. 2007, 79, 469-518.
(23) Cho, E.; Risko, C.; Kim, D.; Gysel, R.; Miller, N. C.; Breiby, D. W.;
McGehee, M. D.; Toney, M. F.; Kline, R. J.; Brédas, J.-L. J. Am. Chem.
Soc. 2012, 134, 6177-6190.
In conclusion, we show that reaction of hexaaminobenzene with
Ni2+ or Cu2+ under carefully controlled conditions gives rise to po-
rous crystalline materials with bulk electrical conductivities ex-
ceeding 800 S/m. UPS measurements and DFT computational stud-
ies evidenced rare metallic behavior in MOFs, a class of notori-
ously insulating materials. Most importantly, we demonstrate for
the first time that metallic behavior and porosity are compatible in
these materials. These results encourage further fundamental phys-
ical studies and advanced electronic applications, which continue
to depend critically on the development of techniques to grow and
study single crystals of 2D MOFs, an area of current efforts in our
group.
ASSOCIATED CONTENT
Supporting Information
Additional experimental details and characterization data. This ma-
terial is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
*mdinca@mit.edu
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
This work was supported by the Army Research Office (grant num-
ber W911NF-17-1-0174). W.L. and J.L. acknowledge support by
the Center for Excitonics, an Energy Frontier Research Center
funded by U.S. Department of Energy, Office of Science, Basic En-
ergy Sciences under Award No. DE-SC0001088. We thank Dr.
Xiaolong Li at beamline BL14B1 (Shanghai Synchrotron Radia-
tion Facility) for assistance with the GIWAXS experiments. Aber-
ration-corrected TEM was carried out at the Center for Functional
Nanomaterials, Brookhaven National Laboratory, which is sup-
ported by the U.S. Department of Energy. Use of the Advanced
Photon Source at Argonne National Laboratory was supported by
the U. S. Department of Energy, Office of Science, Office of Basic
Energy Sciences, under Contract No. DE-AC02-06CH11357. Part
of this work (XAS data collection) was carried out at Stanford Syn-
chrotron Radiation Lightsource, SLAC National Accelerator La-
boratory, supported by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences under Contract No. DE-
AC02-76SF00515. XAS studies were performed with support of
the Office of Science, OBES, Division of Chemical Sciences, Ge-
osciences, and Biosciences (CSGB) of the DOE under contract no.
DE-AC02-05CH11231 (J.Y.). We thank Dr. Charles Settens for as-
sistance with in situ X-ray diffraction measurements. Part of the
(24) Stassen, I.; Burtch, N.; Talin, A.; Falcaro, P.; Allendorf, M.; Ameloot,
R. Chem. Soc. Rev. 2017, 46, 3185-3241.
4
ACS Paragon Plus Environment