ORGANIC
LETTERS
2
005
Vol. 7, No. 17
781-3783
Enantioselective Brønsted Acid
Catalyzed Transfer Hydrogenation:
Organocatalytic Reduction of Imines
3
Magnus Rueping,* Erli Sugiono, Cengiz Azap, Thomas Theissmann, and
Michael Bolte
Degussa Endowed Professorship, Institute of Chemistry and Chemical Biology,
Johann-Wolfgang Goethe UniVersity Frankfurt am Main, Marie-Curie-Str. 11,
D-60439 Frankfurt, Germany
Received July 7, 2005
ABSTRACT
The first enantioselective Brønsted acid catalyzed reduction of imines has been developed. This new organocatalytic transfer hydrogenation
of ketimines with Hantzsch dihydropyridine as the hydrogen source offers a mild method to various chiral amines with high enantioselectivity.
The stereochemistry of the chiral amines can be rationalized by a stereochemical model derived from an X-ray crystal structure of a chiral
BINOL phosphate catalyst.
5
6
7
8
The enantioselective reduction of imines to obtain chiral
amines still represents a challenging topic. Although many
highly enantioselective hydrogenations of ketones and alk-
enes are known, only less effective reductions of imines are
available. Current methods include transition metal catalyzed
thiourea, diol, amidinium, and phosphate catalysts have
been reported. These reactions, similar to several enzymatic
processes, proceed through hydrogen bonding activation.
(
1) For reviews, see: (a) Blaser, H. U.; Malan, C.; Pugin, B.; Spindler,
1
2
high-pressure hydrogenations, hydrosilylations, or transfer
F.; Steiner, H.; Studer, M. AdV. Synth. Catal. 2003, 345, 103. (b) Tang,
3
hydrogenations, using a variety of chiral Pd, Ti, Rh, Ru,
W.; Zhang, X. Chem. ReV. 2003, 103, 3029.
(
2) Recent reviews, see: (a) Riant, O.; Mostefai, N.; Courmarcel, J.
and Ir-complexes (eq 1).
Synthesis 2004, 2943. (b) Carpentier, J. F.; Bette, V. Curr. Org. Chem.
002, 6, 913. Organocatalytic hydrosilylation: Malkov, A. V.; Mariani,
A.; MacDougall, K. N.; Ko e` ovsk y´ , P. Org. Lett. 2004, 6, 2253.
2
(
3) Kadyrov, R.; Riermeier, T. H. Angew. Chem., Int. Ed. 2003, 42, 5472.
(4) For reviews on chiral Brønsted acid catalysis, see: (a) Schreiner, P.
R. Chem. Soc. ReV. 2003, 32, 289. (b) Pihko P. M. Angew. Chem., Int. Ed.
004, 43, 2062.
5) (a) Sigman, M. S.; Vachal, P.; Jacobsen, E. N. Angew. Chem., Int.
Ed 2000, 39, 1279. (b) Vachal, P.; Jacobsen, E. N. J. Am. Chem. Soc. 2002,
2
(
1
1
1
1
4
24, 10012. (c) Wenzel, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2002,
24, 12964. (d) Okino T.; Hoashi Y.; Takemoto Y. J. Am. Chem. Soc. 2003,
25, 12672. (e) Taylor, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2004,
26, 10558. (f) Yoon T. P.; Jacobsen E. N. Angew. Chem., Int. Ed. 2005,
4, 466. (g) Berkessel, A.; Cleemann, F.; Mukherjee S.; M u¨ ller, T. N.;
Lex. J. Angew. Chem., Int. Ed. 2005, 44, 807.
6) (a) Huang, Y.; Unni, A. K.; Thadani, A. N.; Rawal, V. H. Nature
4
(
Recently, chiral Brønsted acids have become an important
alternative to metal catalysts, and examples of highly
enantioselective nonmetallic transformations, based on chiral
2
2
003, 424, 146. (b) McDougal, N. T.; Schaus, S. E. J. Am. Chem. Soc.
003, 125, 12094. (c) Thadani, A. N.; Stankovic, A. R.; Rawal, V. H. Proc.
Natl. Acad. Sci. U.S.A. 2004, 101, 5839.
1
0.1021/ol0515964 CCC: $30.25
© 2005 American Chemical Society
Published on Web 07/26/2005