K. Junge et al. / Tetrahedron Letters 43 (2002) 4977–4980
4979
Table 2. Solvent screening in asymmetric hydrogenation of
methyl a-acetamidocinnamate for ligand 1d
ligand structure and the synthesis of water-soluble lig-
ands are currently explored.
O
O
H2
Acknowledgements
Ph
OMe
Ph
OMe
*
NHAc
2a
NHAc
3a
We thank Mrs. A. Lehmann and Mrs. M. Heyken for
excellent technical assistance. We are grateful to the
Fonds der Chemischen Industrie and the Bundesminis-
terium fu¨r Bildung und Forschung (BMBF), Degussa
AG, and the State Mecklenburg-Western Pommerania
for funding of this project. Mrs. S. Buchholz and Dr.
C. Fischer (both IfOK) are thanked for their excellent
analytical service.
Entry
Solvent
ee (%) (R)
t/2 (min)
1a
2b
3c
4d
5a
6a
7a
8a
9e
Ethyl acetate
Ethyl acetate
Ethyl acetate
Ethyl acetate
THF
Methanol
Acetone
CH2Cl2
Toluene/SDS
90
90
93
92
92
89
88
86
95
5
8
8
77
15
2
3
4
36
References
1. For reviews, see: (a) MacCarthy, M.; Guiry, P. J. Tetra-
hedron 2001, 57, 3809–3843; (b) Zhang, X. Enantiomer
1999, 4, 541–555; (c) Gladiali, S.; Fabbri, D. Chem.
Ber./Recueil 1997, 130, 543–554; (d) Noyori, R. Asym-
metric Catalysis in Organic Synthesis; Wiley & Sons: New
York, 1994; Chapter 2; (e) Burk, M. J.; Bienewald, F. In
Transition Metals for Organic Synthesis; Beller, M.;
Bolm, C., Eds.; Wiley-VCH: Weinheim, 1998; Vol. 2,
Chapter 1.1.2; (f) Lagasse, F.; Kagan, H. B. Chem.
Pharm. Bull. 2000, 48, 315–324.
a Conditions: 1.0 mmol substrate; 0.01 mmol [Rh(COD)2]BF4;
cat.:ligand=1:2; 15 ml solvent; 25°C, 1 bar H2.
b Rh:1d=1:1.
c Rh:1d=1:4.
d Rh:1d=0.1:1.
e Conditions like +0.2 mmol SDS; conversion: 100%.
a
Table 3. Substrate screening in asymmetric hydrogenation
for ligand 1d in toluene
O
O
2. For selected examples of prominent diphosphines, see: (a)
diop: Dang, T.-P.; Kagan, H. B. Chem. Commun. 1971,
481; (b) Kagan, H. B.; Dang, T.-P. J. Am. Chem. Soc.
1972, 94, 6429–6433; (c) BINAP: Miyashita, A.; Yasuda,
A.; Takaya, H.; Toriumi, K.; Ito, T.; Souchi, T.; Noyori,
R. J. Am. Chem. Soc. 1980, 102, 7932–7934; (d) Takaya,
H.; Akutagawa, S.; Noyori, R. Org. Synth. 1988, 67,
20–26; (e) Duphos, BPE: Burk, M. J. J. Am. Chem. Soc.
1991, 113, 8518–8519; (f) Burk, M. J.; Feaster, J. E.;
Nugent, W. A.; Harlow, R. L. J. Am. Chem. Soc. 1993,
115, 10125–10138; (g) RoPhos, BasPhos: Holz, J.; Quirm-
bach, M.; Schmidt, U.; Heller, D.; Stu¨rmer, R.; Bo¨rner,
A. J. Org. Chem. 1998, 63, 8031–8034; (h) Holz, J.;
Heller, D.; Stu¨rmer, R.; Bo¨rner, A. Tetrahedron Lett.
1999, 40, 7059–7062; (i) Holz, J.; Stu¨rmer, R.; Schmidt,
U.; Drexler, H.-J.; Heller, D.; Krimmer, H.-P.; Bo¨rner,
A. Eur. J. Org. Chem. 2001, 4615–4624; (j) Josiphos:
Togni, A.; Breutel, C.; Schnyder, A.; Spindler, F.; Lan-
dert, H.; Tijani, A. J. Am. Chem. Soc. 1994, 116, 4062–
4066; For other representative chiral diphosphines, see:
(k) Yamanoi, Y.; Imamoto, T. J. Org. Chem. 1999, 64,
2988–2989; (l) Pye, P. J.; Rossen, K.; Reamer, R. A.;
Tsou, N. N.; Volante, R. P.; Reider, P. J. J. Am. Chem.
Soc. 1997, 119, 6207–6208; (m) Jiang, Q.; Jiang, Y.; Xiao,
D.; Cao, P.; Zhang, X. Angew. Chem., Int. Ed. 1998, 37,
1100–1103.
H2
R
OMe
R
OMe
*
R´
2
R´
3
Entry
Substrate
ee (%)
1a
2a
3a
4b
R=4-CH3-C6H4; R%=NHAc
R=4-Br-C6H4; R%=NHAc
R=4-NO2-C6H4; R%=NHAc
R=H; R%=CH2COOMe
90
84
90
78
a Substrate:Rh:1d=2 mmol:0.01 mmol:0.02 mmol; 5 bar H2; toluene
as solvent.
b Substrate:Rh:1d=1 mmol:0.01 mmol:0.02 mmol; solvent: ethyl ace-
tate; yield: >99%.
enantioselectivities (78–90% ee) are obtained using the
standard reaction protocol in toluene as solvent.
In conclusion, a general synthesis of optically pure
monodentate dinaphthophosphepine ligands is pre-
sented. A variety of new chiral ligands are now avail-
able on g-scale. Aryl-substituted dinaphthophosphepine
ligands lead to very good enantioselectivities in the
rhodium-catalyzed hydrogenation of (Z)-a-acetami-
docinnamic acid derivatives. Even though more selec-
tive bidentate phosphines are known for the shown
asymmetric hydrogenation reactions, the here presented
ligands demonstrate that simple monodentate phosphi-
nes are close to the selectivity level of the more promi-
nent chiral diphosphines. Further optimization of the
3. For a recent review about monophosphines, see: (a)
Komarov, I. V.; Bo¨rner, A. Angew. Chem., Int. Ed. 2001,
40, 1197–1200; For some successful examples, see: (b)
Guillen, F.; Fiaud, J.-F. Tetrahedron Lett. 1999, 40,
2939–2942; (c) Knowles, W. S.; Sabacky, M. J.; Vineyard,
B. D. J. Chem. Soc., Chem. Commun. 1972, 10–11; (d)
Morrison, J. D.; Burnett, R. E.; Aguiar, A. M.; Morrow,
C. J.; Phillips, C. J. Am. Chem. Soc. 1971, 93, 1301–1303;