Chemistry of Materials p. 1704 - 1714 (2019)
Update date:2022-08-18
Topics:
Dunstan, Matthew T.
Halat, David M.
Tate, Matthew L.
Evans, Ivana Radosavljevic
Grey, Clare P.
Ionic conducting materials are crucial for the function of many advanced devices used in a variety of applications, such as fuel cells and gas separation membranes. Many different chemical controls, such as aliovalent doping, have been attempted to stabilize ?-Bi2O3, a material with exceptionally high oxide-ion conductivity which is unfortunately only stable over a narrow temperature range. In this study, we employ a multinuclear, variable-temperature NMR (VT-NMR) spectroscopy approach to characterize and measure oxide-ionic motion in the V- and P-substituted bismuth oxide materials Bi0.913V0.087O1.587, Bi0.852V0.148O1.648, and Bi0.852P0.148O1.648, previously shown to have excellent ionic conduction properties (Kuang et al., Chem. Mater. 2012, 24, 2162; Kuang et al., Angew. Chem., Int. Ed. 2012, 51, 690). Two main 17O NMR resonances are distinguished for each material, corresponding to O in the Bi-O and V-O/P-O sublattices. Using VT measurements ranging from room temperature to 923 K, the ionic motion experienced by these different sites has then been characterized, with coalescence of the two environments in the V-substituted materials clearly indicating a conduction mechanism facilitated by exchange between the two sublattices. The lack of this coalescence in the P-substituted material indicates a different mechanism, confirmed by 17O T1 (spin-lattice relaxation) NMR experiments to be driven purely by vacancy motion in the Bi-O sublattice. 51V and 31P VT-NMR experiments show high rates of tetrahedral rotation even at room temperature, increasing with heating. An additional VO4 environment appears in 17O and 51V NMR spectra of the more highly V-substituted Bi0.852V0.148O1.648, which we ascribe to differently distorted VO4 tetrahedral units that disrupt the overall ionic motion, consistent both with line width analysis of the 17O VT-NMR spectra and experimental results of Kuang et al., showing a lower oxide-ionic conductivity in this material compared to Bi0.913V0.087O1.587 (Chem. Mater. 2012, 24, 2162). This study shows that solid-state NMR is particularly well suited to understanding connections between local structural features and ionic mobility and can quantify the evolution of oxide-ion dynamics with increasing temperature.
View MoreZHIJIANG ZENVA SINO COMMERCE AND TRADE CO., LTD.
website:http://www.zenvasino.com
Contact:+86-138-72658998
Address:Shibeishan Road,Zhijiang, Hubei, China
Changsha Huajing Powdery Material Technological Co., Ltd.
Contact:86-731-88879686
Address:Building 2, West Garden, Main Campus of Central South University, Changsha, Hunan Province, China
Shanghai Synmedia Chemical Co., Ltd
Contact:+86-21-38681880
Address:6th Floor, 11A Building, No.528 Ruiqing Road, Heqing town, Pudong new district, Shanghai China
website:http://www.mascot-ie.com
Contact:86-519-85010339
Address:B-802,XingBei Building,391#,Tongjiang Middle Road New District,Changzhou,JS,China
Ningbo Distant Chemicals Co.,Ltd
Contact:86-574-27862490,27862438
Address:5F-3,#54 DaShaNi street,Ningbo,CHINA
Doi:10.1246/bcsj.81.1675
(2008)Doi:10.1039/c3cy00740e
(2014)Doi:10.1016/S0940-9602(01)80209-0
()Doi:10.1016/j.dyepig.2017.01.004
(2017)Doi:10.1080/15533171003629097
(2010)Doi:10.1021/ja01062a029
(1964)