10.1002/anie.202012124
Angewandte Chemie International Edition
COMMUNICATION
x 103 M. The kinetic parameters of the racemization process were
also determined using the cis-catalyst with different substrate
concentrations. The kinetics data exhibited a Michaelis-Menten
behaviour (Figure 6C). Albeit the natural enzymes are far superior
compared to this mimic (Table S2), the catalyst cis-1 displays an
enzyme-like activity as is evident from the data in Table 1.
Although establishment of the details of the mechanism including
the rate-determining step require further studies, a key step for
the racemase activity is the base-induced deprotonation from the
amino acid-PLP aldimine. For our active-site mimic, in the cis
isomer the base reaches an optimum orientation and the distance
for an intramolecular deprotonation from the aldimine, whereas,
in the trans-isomer, the base and the aldimine units are far apart.
This makes the only cis-isomer an efficient active-form and the
activity could thus be turned on and off by light (Figure 6A).
Various thermodynamic parameters, including ΔEact, ΔH#, ΔS#
and t1/2 were calculated from the variable temperature kinetics
data. (Figure S22A and S22B, Table S3).
[6]
[7]
M. P. Hill, E. C. Carroll, M. C. Vang, T. A. Addington, M. D. Toney, D. S.
Larsen, J. Am. Chem. Soc. 2010, 132, 16953–16961.
B. G. Caulkins, R. P. Young, R. A. Kudla, C. Yang, T. J. Bittbauer, B.
Bastin, E. Hilario, L. Fan, M. J. Marsella, M. F. Dunn, L. J. Mueller, J. Am.
Chem. Soc. 2016, 138, 15214−15226.
[8]
[9]
S. Dajnowicz, J. M. Parks, X. Hu, R. C. Johnston, A. Y. Kovalevsky, T.
C. Mueser, ACS Catal. 2018, 8, 6733−6737.
C. E. Boville, R. A. Scheele, P. Koch, S. Brinkmann-Chen, A. R. Buller,
F. H. Arnold, Angew. Chem. Int. Ed. 2018, 57, 14764− 14768.
[10] M. D. Toney, Biochem. Biophys. 2005, 433, 279-287.
[11] S. Singh, G. N. Jr. Phillips, J. S. Thorson, Nat. Prod. Rep. 2012, 29,
1201–1237.
[12] A. D. Radkov, L. A. Moe, Appl Microbiol Biotechnol. 2014, 98, 5363-5374
[13] M. D. Toney, Biochim Biophys Acta. 2011, 1814, 1407–1418.
[14] B. L. Feringa, Angew.Chem. Int. Ed. 2017, 56, 11060 –11078.
[15] W. Szymanski, J. M. Beierle, H. A. V. Kistemaker, W. A. Velema, B. L.
Feringa, Chem. Rev. 2013, 113, 6114−6178.
[16] P. Gorostiza, E. Y. Isacoff, Science 2008, 322, 395−399A.
[17] F. Wurthner, J. Jr. Rebek, Angew. Chem. Int. Ed. 1995, 34, 446–448.
[18] M. Samanta, V. S. Rama Krishna. S. Bandyopadhyay, Chem. Commun.
2014, 50, 10577–10579.
In summary, this work reports an active site mimic44 of the
racemase enzyme. This activity can be turned on and off
reversibly with light. The racemase mechanism involves a
deprotonation of the CH of the amino acid-PLP Schiff’s base to
generate the ketimine intermediate that is subsequently
reprotonated. We have designed a light controlled dynamic
catalyst using the cis-trans photoisomerization of an azobenzene
[19] N. A. Simeth, S. Crespi, M. Fagnoni, B. Konig, J. Am. Chem. Soc.
2018, 140, 2940–2946.
[20] K. Rustler, M. J. Mickert, J. R. Nazet, H. H. G. Merkl, B. König, Org.
Biomol. Chem. 2018, 16, 7430–7437.
[21] U. Reddy, G. P. Das, S. Saha, M. Baidya, S. K. Ghosh, A. Das, Chem.
Commun. 2013, 49, 255–257.
[22] A. S. Lubbe, W. Szymanski, B. L. Feringa, Chem. Soc. Rev. 2017, 46,
1052−1079.
photoswitch. The active site mimic consists of
photoswitch-PLP triad. When the azobenzene
a
base-
was
[23] T. Podewin, J. Broichhagen, C. Frost, D. Groneberg, J. Ast, H. Meyer-
Berg, N. H. F. Fine, A. Friebe, M. Zacharias, D. J. Hodson, D. Trauner,
A. Hoffmann-Rö der, Chem. Sci. 2017, 8, 4644−4653.
photoisomerized, the relative position between the imidazole
base and the reaction centre changed. In the trans form, the
imidazole unit was too distant to reach the CH proton of the
PLP-bound alanine substrate. Whereas, in the photogenerated
cis isomer, the imidazole reached was placed within the proximity
of the CH proton such that the deprotonation could easily take
place. The reprotonation of the resulting highly stabilized, planar
carbanion takes place from either prochiral faces generating a
racemic mixture. Thus the catalyst displays a photoregulated
racemase activity.
[24] S. Ammathnadu, K. Amrutha, R. S. Kumar, T. Kikukawa, N. Tamaoki,
ACS Nano 2017, 11 (12), 12292–12301.
[25] S. S. Grimm, E. Y. Isacoff, Nat. Chem. Biol. 2016, 12, 261–267.
[26] S. Chen, Y. Itoh, T. Masuda, S. Shimizu, J. Zhao, J. Ma, S. Nakamura,
K. Okuro, H. Noguchi, K. Uosaki, T. Aida, Science 2015, 348, 555–559.
[27] D. Vomasta, C. Hogner, N. R. Branda, B. Konig, Angew. Chem. Int. Ed.
2008, 47, 7644-7647.
[28] D. T. Major, K. Nam, J. L. Gao, J. Am. Chem. Soc. 2006, 128, 8114-8115.
[29] M. E. Tanner, Acc. Chem. Res. 2002, 35, 237−246.
[30] A. A. Morollo, G. A. Petsko, D. Ringe, Biochemistry 1999, 38, 3293-3301.
[31] S. Sun, M. D. Toney, Biochemistry 1999, 38, 4058-4065.
[32] M. D. Tonny, Front. Bioeng. Biotechnol. 2019, 7, 1-11.
[33] M. Saha, S. Bandyopadhyay, Chem. Commun. 2019, 55, 3294-3297.
[34] D. Wilson, N. R. Branda, Angew. Chem. Int. Ed. 2012, 51, 5431–5434.
[35] D. Sud, T. B. Norsten, N. R. Branda, Angew. Chem. Int. Ed. 2005, 44,
2019–2021.
Acknowledgements
This work was financially supported by DST-SERB, Govt. of India
(Grant No. EMR/2017/003720). MS is supported by an INSPIRE
doctoral fellowship by DST-India and MSH is funded by CSIR
(Council of Scientific & Industrial Research), India.
[36] M. S. Hossain, S. A. Rahaman, J. Hatai, M. Saha, S. Bandyopadhyay,
Chem. Commun. 2020, 56, 4172-4175.
[37] R. S. Stoll. S. Hecht, Angew. Chem. Int. Ed. 2010, 49, 5054 – 5075.
[38] V. Blanco, D. A. Leigh, V. Marcos, Chem. Soc. Rev. 2015, 44, 5341-5370.
[39] A. Rullo, A. Reiner, A. Reiter, D. Trauner, E. Y. Isacoff, G. A. Woolley,
Chem. Commun. 2014, 50, 14613–14615.
Keywords: biomimetic, enzyme catalysis, photochemistry,
[40] R. Mogaki, K. Okuro, T. Aida, J. Am. Chem. Soc. 2017, 139, 10072–
10078.
azobenzene, photochromism.
[41] K. H. DuBay, K. Iwan, L. O. Planes, P. L. Geissler, M. Groll, D. Trauner,
J. Broichhagen, ACS Chem. Biol. 2018, 13, 793-800.
[1]
Lehninger Principles of Biochemistry. W.H Freeman & Co. 6th Edition,
2012.
[2]
[42] Y. L. Lin, J. Gao, Biochemistrty. 2010, 49, 84-94.
S. Bandyopadhyay, W. Zhou, R. Breslow, Org. Lett. 2007, 9, 1009–1012.
R. Breslow, S. Bandyopadhyay, M. Levine, W. Zhou, Chem. Bio. Chem.
2006, 7, 1491–1496.
[43] J. Hayashi, Y. Mutaguchi, Y. Minemura, N. Nakagawa, K. Yoneda, T.
Ohmori, T. Ohshima, H. Sakuraba, Structural Biology 2017, 73, 428-437.
[44] M. Raynal, P. Ballster, A. Vidal-Ferral, P.W.N.M. van Leeuwen, Chem.
Soc. Rev. 2014, 43, 1734-1787.
[3]
[4]
[5]
D. T. Major, J. A. Gao, J. Am. Chem. Soc. 2006, 128, 16345−16357.
B. G. Caulkins, B. Bastin, C. Yang, T. J. Neubauer, R. P. Young, E.
Hilario, Y. M. M. Huang, C. E. A. Chang, L. Fan, M. F. Dunn, M. J.
Marsella, L. J. Mueller, J. Am. Chem. Soc. 2014, 136, 12824-12827.
This article is protected by copyright. All rights reserved.