10.1002/adsc.201900803
Advanced Synthesis & Catalysis
chromatography on silica gel using petroleum ether/ethyl
acetate as eluent.
A. M. Olivares, A. M. Spiewak, K. A. Johnson, T. A.
DiBenedetto, S. Kim, L. K. Ackerman, D. J. Weix, J.
Am. Chem. Soc. 2016, 138, 5016–5019; c) F. Toriyama,
J. Cornella, L. Wimmer, T. G. Chen, D. D. Dixon, G.
Creech, P. S. Baran, J. Am. Chem. Soc. 2016, 138,
11132–11135; d) J. T. Edwards, R. R. Merchant, K. S.
McClymont, K. W. Knouse, T. Qin, L. R. Malins, B.
Vokits, S. A. Shaw, D. H. Bao, F. L. Wei, T. Zhou, M.
D. Eastgate, P. S. Baran, Nature 2017, 545, 213–218.
[8] a) J. Yang, J. Zhang, L. Qi, C. Hu, Y. Chen, Chem.
Commun. 2015, 51, 5275–5278; b) W.-M. Cheng, R.
Shang, Y. Fu, ACS Catal. 2016, 7, 907–911; c) W. M.
Cheng, R. Shang, M. C. Fu, Y. Fu, Chem. Eur. J. 2017,
23, 2537–2541; d) K. Xu, Z. Tan, H. Zhang, J. Liu, S.
Zhang, Z. Wang, Chem. Commun. 2017, 53, 10719–
10722; e) W. Kong, C. Yu, H. An, Q. Song, Org. Lett.
2018, 20, 349–352.
[9] a) M. J. Schnermann, L. E. Overman, J. Am. Chem. Soc.
2011, 133, 16425–16427; b) M. J. Schnermann, L. E.
Overman, Angew. Chem. Int. Ed. 2012, 51, 9576–9580;
Angew. Chem. 2012, 124, 9714–9718; c) G. L. Lackner,
K. W. Quasdorf, L. E. Overman, J. Am. Chem. Soc.
2013, 135, 15342–15345; d) L. Chu, C. Ohta, Z. Zuo,
D. W. C. MacMillan, J. Am. Chem. Soc. 2014, 136,
10886–10889; e) G. Z. Wang, R. Shang, W. M. Cheng,
Y. Fu, Org. Lett. 2015, 17, 4830–4833; f) J. Schwarz, B.
König, Green Chem. 2016, 18, 4743–4749.
[10] a) L. Candish, M. Teders, F. Glorius, J. Am. Chem.
Soc. 2017, 139, 7440–7443; b) A. Fawcett, J. Pradeilles,
Y. Wang, T. Mutsuga, E. L. Myers, V. K. Aggarwal,
Science 2017, 357, 283–286; c) M.-C. Fu, R. Shang, B.
Zhao, B. Wang, Y. Fu, Science 2019, 363, 1429–1434.
[11] a) J. K. Kochi, Angew. Chem. Int. Ed. 1988, 27,
1227–1266; Angew. Chem. 1988, 100, 1331–1372; b) S.
V. Rosokha, J. K. Kochi, Acc. Chem. Res. 2008, 41,
641–653.
[12] a) G. Z. Wang, R. Shang, Y. Fu, Org. Lett. 2018, 20,
888–891 b) C. Zheng, W.-M. Cheng, H.-L. Li, R.-S. Na,
R. Shang, Org. Lett. 2018, 20, 2559–2563; c) W. M.
Cheng, R. Shang, Y. Fu, Nat. Commun. 2018, 9, 5215.
[13] a) B. Giese, Angew. Chem. Int. Ed. 1983, 22, 753-
764; Angew. Chem. 1983, 95, 771-782; b) B. Giese, J.
A. González‐Gómez, T. Witzel, Angew. Chem. Int.
Ed. 1984, 23, 69–70; Angew. Chem. 1984, 96, 51–52;
c) G. Goti, B. Bieszczad, A. Vega ‐ Peñaloza, P.
Melchiorre, Angew. Chem. Int. Ed. 2019, 58, 1213–
1217; Angew. Chem. 2019, 131, 1226–1230; d) T. van
Leeuwen, L. Buzzetti, L. A. Perego, P. Melchiorre,
Angew. Chem. Int. Ed. 2019, 58, 4953–4957; Angew.
Chem. 2019, 131, 5007–5011.
Acknowledgements
This research was funded by the National Natural Science
Foundation of China (NSFC) (Grant No. 21702039), Key
Research and Development Program of Hainan Province (No.
ZDYF2019155), the Program for Innovative Research Team in
University (No. IRT-16R19). G.-Z.W. thanks China Postdoctoral
Science Foundation (2018M640588) for support.
References
[1] a) L. J. Goossen, G. Deng, L. M. Levy, Science 2006,
313, 662–664; b) R. Shang, Z. W. Yang, Y. Wang, S. L.
Zhang, L. Liu, J. Am. Chem. Soc. 2010, 132, 14391–
14393; c) N. Rodriguez, L. J. Goossen, Chem. Soc. Rev.
2011, 40, 5030–5048; d) R. Shang, L. Liu, Sci. China:
Chem. 2011, 54, 1670–1687; e) Y. Wei, P. Hu, M.
Zhang, W. Su, Chem. Rev. 2017, 117, 8864–8907; f) J.
Schwarz, B. König, Green Chem. 2018, 20, 323–361;
g) V. R. Yatham, P. Bellotti, B. König, Chem. Commun.
2019, 55, 3489–3492.
[2] a) D. H. Barton, J. C. Jaszberenyi, D. Tang,
Tetrahedron Lett. 1993, 34, 3381–3384; b) K.
Yamaguchi, Y. Kazuta, H. Abe, A. Matsuda, S. Shuto,
J. Org. Chem. 2003, 68, 9255–9262; c) E. J. Ko, G. P.
Savage, C. M. Williams, J. Tsanaktsidis, Org. Lett.
2011, 13, 1944–1947; d) T. Qin, L. R. Malins, J. T.
Edwards, R. R. Merchant, A. J. Novak, J. Z. Zhong, R.
B. Mills, M. Yan, C. Yuan, M. D. Eastgate, P. S. Baran,
Angew. Chem. Int. Ed. 2017, 56, 260–265; Angew.
Chem. 2017, 129, 266–271.
[3] a) A. J. Straathof, Chem. Rev., 2014, 114, 1871–1908;
b) J. Xuan, Z.-G. Zhang, W.-J. Xiao, Angew. Chem. Int.
Ed. 2015, 54, 15632–15641; Angew. Chem. 2015, 127,
15854–15864.
[4] a) Z. Zuo, D. T. Ahneman, L. Chu, J. A. Terrett, A. G.
Doyle, D. W. MacMillan, Science 2014, 345, 437–440;
b) Z. Zuo, D. W. MacMillan, J. Am. Chem. Soc. 2014,
136, 5257–5260; c) T. Chinzei, K. Miyazawa, Y. Yasu,
T. Koike, M. Akita, RSC Adv., 2015, 5, 21297–21300;
d) C. P. Johnston, R. T. Smith, S. Allmendinger, D. W.
MacMillan, Nature 2016, 536, 322–325; e) N. P.
Ramirez, J. C. Gonzalez-Gomez, Eur. J. Org. Chem.
2017, 2154–2163. f) V. R. Yatham, P. Bellotti, B.
König, Chem. Commun. 2019, 55, 3489–3492.
[5] a) K. Okada, K. Okamoto, M. Oda, J. Am. Chem. Soc.
1988, 110, 8736–8738; b) K. Okada, K. Okamoto, N.
Morita, K. Okubo, M. Oda, J. Am. Chem. Soc. 1991,
113, 9401–9402; c) G. H. L. Nefkens, G. I. Tesser, J.
Am. Chem. Soc. 1961, 83, 1263–1263; d) D. S. Muller,
N. L. Untiedt, A. P. Dieskau, G. L. Lackner, L. E.
Overman, J. Am. Chem. Soc. 2015, 137, 660–663. e) T.
Qin, J. Cornella, C. Li, L. R. Malins, J. T. Edwards, S.
Kawamura, B. D. Maxwell, M. D. Eastgate, P. S. Baran,
Science 2016, 352, 801–805.
[14] a) C. H. Basch, J. Liao, J. Xu, J. J. Piane, M. P.
Watson, J. Am. Chem. Soc. 2017, 139, 5313–5316; b) F.
J. R. Klauck, M. J. James, F. Glorius, Angew. Chem. Int.
Ed. 2017, 56, 12336–12339; Angew. Chem. 2017, 129,
12505–12508; c) S. Plunkett, C. H. Basch, S. O.
Santana, M. P. Watson, J. Am. Chem. Soc. 2019, 141,
2257–2262; d) H. Yue, C. Zhu, L. Shen, Q. Geng, K. J.
Hock, T. Yuan, L. Cavallo, M. Rueping, Chem. Sci.
2019, 10, 4430–4435.
[6] S. Murarka, Adv. Synth. Catal. 2018, 360, 1735–1753.
[7] a) J. Cornella, J. T. Edwards, T. Qin, S. Kawamura, J.
Wang, C. M. Pan, R. Gianatassio, M. Schmidt, M. D.
Eastgate, P. S. Baran, J. Am. Chem. Soc. 2016, 138,
2174–2177; b) K. M. Huihui, J. A. Caputo, Z. Melchor,
[15] Duing the scope investigation of this work Aggarwal
and co-workers reported the deaminative conjugate
addition using same strategy, so the scope of
5
This article is protected by copyright. All rights reserved.