solution was adjusted with HEPES buffer [N-(2-hydroxyethyl)-
8 E. Darzynkiewicz, J. Antosiewicz, I. Ekiel, M. A. Morgan,
S. M. Tahara and A. J. Shatkin, J. Mol. Biol., 1981, 153, 451–458.
piperazine-NЈ-ethanesulfonic acid; pK 7.56], with MES buffer
a
9
B. F. Baker, S. S. Lot, J. Kringel, J. S. Cheng-Flournoy, P. Villiet,
H. M. Sasmor, A. M. Siwkowski, L. L. Chappell and J. R. Morrow,
Nucleic Acids Res., 1999, 27, 1547–1551.
(
2-morpholinoethanesulfonic acid; pK 6.15) or with CHES
a
buffer [CHES = 2-(N-cyclohexylamino)ethanesulfonic acid;
pK 9.3]. The pH of the reaction solutions was checked with
a
10 R. M. Milburn, M. Gautam-Basak, R. Tribolet and H. Sigel, J. Am.
Chem. Soc., 1985, 107, 3315–3321.
11 F. Tafesse, S. S. Massoud and R. M. Milburn, Inorg. Chem., 1985,
a pH-meter either at 25 ЊC or at 60 ЊC. Ionic strength was
adjusted with NaNO . Sterilised water was used to prepare the
3
2
4, 2591–2593.
2 S. H. McClauherty and C. M. Grisham, Inorg. Chem., 1982, 21,
133–4138.
3 R. J. Geue, A. M. Sargeson and R. Wijesekara, Aust. J. Chem., 1993,
6, 1021–1040.
4 D. A. Nation, Q. Lu and A. E. Martell, Inorg. Chim. Acta, 1997, 263,
09–217.
5 B. F. Baker, J. Am. Chem. Soc., 1993, 115, 3378–3379.
reaction solutions, and they were handled with sterilised
equipment.
1
1
1
1
4
Kinetic measurements
4
Reactions were carried out in Eppendorf tubes immersed in a
water bath, the temperature of which was thermostated at
2
6
0 ЊC. The reactions were initiated by adding substrate stock
16 B. F. Baker, H. Khalili, N. Wei and J. R. Morrow, J. Am. Chem. Soc.,
1997, 119, 8749–875.
solution (a few microlitres) to give a concentration of 0.1 mM.
The total reaction volume was 1.5 ml. Aliquots (12) of 100 µl
were withdrawn at appropriate intervals to cover approximately
two half-lives of the reaction. The aliquots were immediately
cooled down on an ice-bath, and stored in the freezer until
analysed.
1
7 K. P. McCue, D. A. Voss, Jr., C. Marks and J. R. Morrow, J. Chem.
Soc., Dalton Trans., 1998, 2961–2963.
1
1
8 K. P. McCue and J. R. Morrow, Inorg, Chem., 1999, 38, 6136–6142.
9 Z. Wieczorek, E. Darzynkiewicz, S. Kuusela and H. Lönnberg,
Nucleosides Nucleotides, 1999, 18, 11–21.
20 D. M. Epstein, L. L. Chappel, H. Khalili, R. M. Supkowski,
W. D. Horrocks and J. R. Morrow, Inorg. Chem., 2000, 39,
2
130–2134.
Analysis of aliquots
2
1 E. Darzynkiewicz, J. Stepinski, S. M. Tahara, R. Stolarski, I. Ekiel,
D. Haber, K. Neuvonen, P. Lehikoinen, I. Labadi and H. Lönnberg,
Nucleosides Nucleotides, 1990, 9, 599–6118.
2 E. Darzynkiewicz, L. Labadi, D. Haber, K. Burger and
H. Lönnberg, Acta Chem. Scand., Ser. B, 1988, 86–92.
3 H. Sigel and P. E. Amsler, J. Am. Chem. Soc., 1976, 98, 7390–7400.
4 R. Cini and C. Pifferi, J. Chem. Soc., Dalton Trans., 1999,
699–710.
Aliquots from reactions of 1, 4 and 5 were analysed either
by capillary zone electrophoresis (CZE) or HPLC. Capillary
electrophoretic analysis was carried out in a fused silica
capillary (50 µm id, 77 cm) with 0.1 M boric acid, pH 8.0 as the
run buffer. A voltage of 30 kV was applied. The compounds
were detected at 260 nm (diode array detector). Alternatively,
an HPLC analysis was utilised, particularly in case of 4. The
column used was Thermo Quest, Hypersil HS RP-18 (250 ×
2
2
2
25 S. Mikkola, Q. Wang, Z. Jori, H. Helkearo and H. Lönnberg, Acta
Chem. Scand., 1999, 53, 453–456.
2
6 M. W. Hosseini, J.-M. Lehn and M. P. Mertes, Helv. Chim. Acta,
983, 66, 2454–2466.
4
.6 mm, 5 µm particle size), and the eluent a 0.1 M formic acid
1
buffer, pH 3.0, containing 0.1 M tetrabutylammonium bromide.
UV-analysis at 260 nm was utilised. Aliquots from reactions of
2
7 Ionisation Constants of Inorganic Acids and Bases in Aqueous
Solution, Second Edition, D. D. Perrin (Ed.), Pergamon Press,
Oxford, England, 1982, p. 67.
6
and 7 were analysed by RP-HPLC using the Thermo Quest,
Hypersil HS column mentioned above. The eluent was a
mixture of 0.1 M triethyl amine–phosphoric acid buffer and
methanol. In case of 6, the pH of the buffer was 6.8 and the
methanol content was 0.5 %. With 7, the pH was 3.0 and
methanol content 1.0 %. Compounds were detected at wave-
length of 274 nm (6) or 256 nm (7). Aliquots from reactions of
28 J. A. Zoltewicz, D. F. Clarc, T. W. Sharpless and G. Grahe, J. Am.
Chem. Soc., 1973, 92, 1741–1750.
2
9 R. J. Motekaitis, A. E. Martell, J.-P. Lecomte and J.-M. Lehn, Inorg.
Chem., 1983, 22, 609–614.
3
0 B. Linkletter and J. Chin, Angew. Chem., Int. Ed. Engl., 1995, 34,
4
72–474.
31 J. K. Bashkin and L. A. Jenkins, J. Chem. Soc., Dalton Trans., 1993,
3631–3632.
8
were analysed by CZE. The run buffer was 25 mM boric acid,
3
2 M. K. Stern, J. K. Bashkin and E. D. Sall, J. Am. Chem. Soc., 1990,
12, 5357–5359.
3 L. A. Jenkins, L. A. Bashkin and M. E. Autry, J. Am. Chem. Soc.,
996, 118, 6822–6825.
34 M. Ora, M. Oivanen and H. Lönnberg, J. Org. Chem., 1996, 61,
951–3955.
5 M. R. Eftinkt and R. L. Biltonen, Biochemistry, 1983, 22, 5134–
140.
pH 9.0, and a voltage of 30 kV was applied. The capillary
dimensions were as described above.
1
3
1
Calculation of rate constants
3
The rate constants of the disappearance of the starting material
3
(
either decrease of mole fraction or decrease of the signal area)
5
were calculated by using the integrated first-order rate-law. In
CZE analysis the signal areas were divided by the respective
migration times to normalise the areas.
36 S. Liu, Z. Luo and A. D. Hamilton, Angew. Chem., Int. Ed., 1997,
36, 2678–2680.
3
7 J. R. Morrow and W. C. Trogler, Inorg. Chem., 1988, 27,
387–3394.
3
3
3
4
8 K. A. Deal and J. N. Burstyn, Inorg. Chem., 1996, 35, 2792–2798.
9 L. J. Zompa, Inorg. Chem., 1978, 17, 2531–2536.
0 T. Itoh, H. Hisada, Y. Usui and Y. Fujii, Inorg. Chim. Acta, 1998,
283, 51–60.
References
1
2
3
For a recent review, see B. N. Trawick, A. Daniher and J. K. Bashkin,
Chem. Rev., 1998, 98, 939–960.
41 S. Mikkola, E. Stenman, K. Nurmi, E. Yousefi-Salakdeh,
R. Strömberg and H. Lönnberg, J. Chem. Soc., Perkin Trans. 2,
1999, 1619–1625.
K. G. K. Murthy, P. Park and J. L. Manley, Nucleic Acids Res., 1991,
1
9, 2685–2692.
M. M. Konarska, R. A. Padgett and P. A. Sharp, Cell, 1984, 38,
31–736.
42 S. Kuusela and H. Lönnberg, Nucleosides Nucleotides, 1998, 17,
7
2417–2427.
4
5
6
J. Hamm and I. W. Mattaj, Cell, 1990, 63, 109–118.
43 S. Kuusela, A. Guzaev and H. Lönnberg, J. Chem. Soc., Perkin
Trans. 2, 1996, 1895–1899.
44 J. W. Jones and R. K. Robins, J. Am. Chem. Soc., 1963, 95, 193–201.
45 K. Kamiichi, M. Doi, M. Nabae, T. Ishida and M. Inoue, J. Chem.
Soc., Perkin Trans. 2, 1987, 1739–1745.
A. J. Shatkin, Cell, 1985, 40, 223–224.
R. E. Rhoads, in Progress in Molecular and Subcellular Biology Vol.
9
, H. F. Hahn, D. J. Kopecho and W. E. Muller (Eds.), Springer,
Berlin, 1985, pp. 104–155.
7
N. Sonenberg, Prog. Nucleic Acids Res. Mol. Biol., 1988, 35,
46 S. Hendler, E. Fürer and P. R. Srinivasan, Biochemistry, 1970, 9,
1
73–207.
4141–4153.
6
10
J. Chem. Soc., Perkin Trans. 2, 2002, 604–610